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Introduction

Waste storage ponds and treatment lagoons are used 
in agricultural waste management systems to protect 
surface and ground water and as a component in a 
system for properly utilizing wastes. Seepage from 
these structures has the potential to pollute surface 
water and underground aquifers. The principal factors 
determining the potential for downward and/or lateral 
seepage of the stored wastes are the:

•	 permeability	of	the	soil	and	bedrock	horizons	
near the excavated limits of a constructed 
waste treatment lagoon or waste storage pond,

•	 depth	of	liquid	in	the	pond	that	furnishes	a	driv-
ing hydraulic force to cause seepage, and

•	 thickness	of	low	permeability	horizons	be-
tween	the	boundary	of	the	lagoon	bottom	and	
sides and the distance to the aquifer or water 
table

In	some	circumstances,	where	permitted	by	local	and/
or State regulations, designers may consider whether 
seepage	may	be	reduced	from	the	introduction	of	ma-
nure solids into the reservoir. Physical, chemical, and 
biological	processes	can	occur	that	reduce	the	perme-
ability	of	the	soil-liquid	interface.	Suspended	solids	
settle out and physically clog the pores of the soil 
mass.	Anaerobic	bacteria	produce	by-products	that	
accumulate at the soil-liquid interface and reinforce 
the	seal.	The	soil	structure	can	also	be	altered	in	the	
process	of	metabolizing	organic	material.

Chemicals in waste, such as salts, can disperse soil, 
which	may	also	be	beneficial	in	reducing	seepage.	Re-
searchers have reported that, under some conditions, 
the	seepage	rates	from	ponds	can	be	decreased	by	
up to an order of magnitude (reduced 1/10th) within 
a	year	following	filling	of	the	waste	storage	pond	or	
treatment lagoon with manure. Manure with higher 
solids content is more effective in reducing seepage 
than	manure	with	fewer	solids	content.	Research	has	
shown that manure sealing only occurs when soils 
have	a	minimal	clay	content.	A	rule	of	thumb	sup-
ported	by	research	is	that	manure	sealing	is	not	effec-
tive unless soils have at least 15 percent clay content 
for monogastric animal generated waste and 5 percent 
clay content for ruminant animal generated waste 
(Barrington,	Jutras,	and	Broughton	1987a,	1987b).	Ma-

nure sealing is not considered effective on relatively 
clean sands and gravels, and these soils always require 
a	liner	as	described	in	the	following	sections.

Animal	waste	storage	ponds	designed	prior	to	about	
1990	assumed	that	seepage	from	the	pond	would	be	
minimized	by	the	accumulation	of	manure	solids	and	a	
biological	seal	at	the	foundation	surface.	Figure	10D–1	
shows one of these early sites, where the soils at grade 
were	somewhat	permeable	sands.	Monitoring	wells	
installed at some sites with very sandy soils showed 
that seepage containing constituents from the pond 
was still occurring even after enough time had passed 
that manure sealing should have occurred. 

This	evidence	caused	U.S.	Department	of	Agriculture	
(USDA)	Natural	Resources	Conservation	Service	
(NRCS)	engineers	to	reconsider	guidance	on	suitable	
soils for siting an animal waste storage pond. In the 
late 1980s guidance was developed that designs should 
not rely solely on the seepage reduction that might 
occur from the accumulation of manure solids in the 
bottom	and	on	the	sides	of	the	finished	structure.	That	
initial	design	document	was	entitled	“South	National	
Technical	Center	(SNTC)	Technical	Guide	716.”	It	sug-
gested that if any of four site conditions were present 
at a proposed structure location, a clay liner or other 
method	of	reducing	seepage	would	be	used	in	NRCS	
designs. A few revisions were made, and the document 
was	re-issued	in	September	1993.

Figure 10D–1	 Animal	waste	storage	pond	constructed	be-
fore the implementation of modern design 
guidelines
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NRCS	was	reorganized	in	1994,	and	guidance	in	old	
SNTC	documents	was	not	part	of	the	revised	docu-
ment	system	of	the	Agency.	Consequently,	the	716	
document	was	revised	considerably,	and	the	revised	
material	was	incorporated	into	appendix	10D	of	the	
Agricultural	Waste	Field	Management	Handbook	 
(AWMFH)	in	October	1998.	This	2008	version	of	appen-
dix	10D	continues	to	update	and	clarify	the	process	of	
designing an animal waste storage pond that will meet 
NRCS-specified	engineering	design	criteria	and	stated	
specified	permeability	requirements.

General design considerations

Limiting seepage from an agricultural waste storage 
pond	has	two	primary	goals.	The	first	is	to	prevent	
any	virus	or	bacteria	from	migrating	out	of	the	stor-
age facility to an aquifer or water source. The second 
is to prevent the conversion of ammonia to nitrate in 
the	vadose	zone.	Nitrates	are	very	mobile	once	they	
are	formed	by	the	nitrification	process.	They	can	then	
accumulate	significantly	in	ground	water.	The	National	
drinking	water	standard	for	nitrate	is	10	parts	per	mil-
lion, and excessive seepage from animal waste storage 
ponds could increase the level of nitrates in ground 
water	above	this	threshold.	Other	constituents	in	the	
liquid	manure	stored	in	ponds	may	also	be	potential	
contaminants if the seepage from the pond is unac-
ceptably	high.

Defining	an	acceptable	seepage	rate	is	not	a	simple	
task.	Appendix	10D	recommends	an	allowable	seepage	
quantity	that	is	based	on	a	historically	accepted	tenet	
of	clay	liner	design,	which	is	that	a	coefficient	of	per-
meability	of	1×10–7 centimeters per second is reason-
able	and	prudent	for	clay	liners.	This	value,	rightly	or	
wrongly,	has	a	long	history	of	acceptability	in	design	
of impoundments of various types, including sanitary 
landfills.	The	seepage	rate	considered	acceptable	by	
NRCS	is	based	on	this	permeability	rate,	also	consider-
ing the following:

•	 When	credit	for	a	reduction	of	seepage	from	
manure	sealing	(described	later	in	the	docu-
ment)	is	allowed,	NRCS	guidance	considers	
an	acceptable	initial	permeability	value	to	be	
1×10–6 centimeters per second. This higher 
value used for design assumes that manure 
sealing will result in a tenth reduction in the 

initial seepage. Other assumptions are that typi-
cal	NRCS	waste	impoundments	have	a	depth	of	
liquid	of	about	9	feet	and	typical	clay	liners	are	
1	foot	thick.	The	computed	seepage	rate	before	
manure	sealing	took	effect	is	then	about	9,240	
gallons per acre per day, and this rate would 
reduce	to	924	gallons	per	acre	per	day	when	
manure	sealing	reduced	the	seepage	by	one	
tenth. To introduce some conservatism into the 
design,	the	NRCS	guidance	allows	a	seepage	
rate of 5,000 gallons per acre per day for initial 
designs unless State or local regulations are 
more restrictive, in which case those require-
ments	should	be	followed.

•	 If	State	or	local	regulations	prohibit	designs	
from	taking	credit	for	future	reductions	in	seep-
age	from	manure	sealing,	then	NRCS	recom-
mends	the	initial	design	for	the	site	be	based	
on a seepage rate of 1,000 gallons per acre per 
day, the approximate seepage predicted for a 
site	with	9	feet	of	head,	a	1-foot-thick	clay	liner	
and	a	coefficient	of	permeability	in	the	liner	of	
1×10–7 centimeters per second. Applying an ad-
ditional safety factor to this value is not recom-
mended	because	it	conservatively	ignores	the	
potential	benefits	of	manure	sealing.

One	problem	with	basing	designs	on	a	unit	seepage	
value is that the approach considers only unit area 
seepage. The same criterion applies for small and large 
facilities. More involved three-dimensional type analy-
ses	would	be	required	to	evaluate	the	potential	impact	
of seepage on ground water regimes on a whole-site 
basis.	In	addition	to	unit	seepage,	studies	for	large	
storage facilities should consider regional ground wa-
ter	flow,	depth	to	the	aquifer	likely	to	be	affected,	and	
other factors.

The	procedures	in	appendix	10D	to	the	AWMFH	pro-
vide a rational approach to selecting an optimal com-
bination	of	liner	thickness	and	permeability	to	achieve	
a	relatively	economical,	but	effective,	liner	design.	It	
recognizes	that	manipulating	the	permeability	of	the	
soil liner is usually the most cost-effective approach to 
reduce	seepage	quantity.	While	clay	liners	obviously	al-
low some seepage, the limited seepage from a properly 
designed site should have minimal impact on ground 
water	quality.	Numerous	studies,	such	as	those	done	
by	Kansas	State	University	(2000),	have	shown	that	
waste	storage	ponds	located	in	low	permeability	soils	



10D–3(210–VI–AWMFH, rev. 1, March 2008)

Part 651
Agricultural Waste Management 
Field Handbook

Appendix 10D Agricultural Waste Management System 
Component Design

of	sufficient	thickness	have	a	limited	impact	on	the	
quality of ground water.

If regulations or other considerations cause a design 
to	be	devised	with	a	goal	of	reducing	unit	seepage	to	
less	than	500	gallons	per	acre	per	day	(1/56	inch	per	
day),	NRCS	engineers’	opinions	are	that	synthetic	lin-
ers	such	as	high-density	polyethylene	(HDPE),	linear	
low-density	polyethylene	(LLDPE),	ethylene	propylene	
diene	monomer	(EPDM),	or	geosynthetic	clay	liners	
(GCL),	concrete	liners,	or	aboveground	storage	tanks	

Figure 10D–2 Pond with synthetic liner (Photo credit 
NRCS)

Figure 10D–3	 Excavated	animal	waste	storage	pond	with	
concrete liner (Photo credit NRCS)

Figure 10D–4	 Aboveground	storage	tank	for	animal	
waste (Photo credit Mitch Cummings, 
Oregon NRCS)

will	be	required	to	achieve	lower	rates.	Figure	10D–2	
shows	a	pond	lined	with	a	synthetic	liner,	figure	10D–3	
shows	a	concrete-lined	excavated	pond,	and	figure	
10D–4	shows	an	aboveground	concrete	tank.	Above-
ground	tanks	may	be	also	constructed	of	fiberglass-
lined	steel.	NRCS	has	significant	expertise	in	the	
selection,	specification,	and	construction	of	sites	using	
these	products	in	addition	to	clay	liners.	Guidance	on	
these other technologies is contained in other chapters 
of the AWMFH.
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Progressive design

Waste storage ponds and waste treatment lagoons are 
usually	designed	with	specific	objectives	that	include	
cost,	allowable	seepage,	aesthetics,	and	other	consid-
erations.	Designs	are	usually	evaluated	in	a	progres-
sive manner, with less costly and simple methods 
considered	first,	and	more	costly	and	complex	meth-
ods considered next. These design concepts should 
generally	be	considered	in	the	order	listed	to	provide	
the most economical, yet effective, design of these 
structures. The following descriptions cover details 
on design and installation of these individual design 
measures.

•	 The	least	expensive	and	least	complex	design	
is to locate a waste impoundment in soils that 
have	a	naturally	low	permeability	and	where	
horizons	are	thick	enough	to	reduce	seepage	
to	acceptable	levels.	The	site	should	also	be	
located	where	the	distance	to	the	water	table	
conforms	to	requirements	of	any	applicable	
regulations.

•	 Soils	underlying	the	excavated	boundaries	of	
the	pond	may	not	be	thick	enough	or	slowly	
permeable	enough	to	limit	seepage	to	accept-
ably	low	values.	In	this	case,	the	next	type	of	
design often considered is a liner constructed 
of compacted clay or other soils with appropri-
ate	amendments.	This	type	of	liner	may	be	con-
structed with soils from the excavation itself 
or	soil	may	be	imported	from	nearby	borrow	
sources. If the soils require amendments such 
as	bentonite	or	soil	dispersants,	the	unit	cost	of	
the	compacted	liner	will	be	significantly	higher	
than for a liner that only requires compaction 
to	achieve	a	satisfactorily	low	permeability.

•	 A	synthetic	liner	may	be	used	to	line	the	im-
poundment	to	reduce	seepage	to	acceptable	
levels. Various types of synthetic materials are 
available.

•	 A	liner	may	be	constructed	of	concrete,	or	a	
concrete	or	fiberglass-lined	steel	tank	can	be	
constructed	above	ground	to	store	the	wastes.

A useful tool in comparing design alternatives is to 
evaluate	unit	costs.	Benefits	of	alternatives	may	then	
be	compared	against	unit	costs	to	aid	in	selecting	
a	design	alternative.	Benefits	may	include	reduced	

Table 10D–2 Cost comparison for other design options

Liner type Unit costs ($/ft2)

Geosynthethic 0.50–1.25

Concrete, reinforced
5	inches	thick

7.50–8.00

Table 10D–1 Cost comparisons of design options for 
compacted clay liner

Thickness 
of compact-
ed liner  
(ft)

Number of 
cubic yards of 
fill per square 
foot  
(yd3)

Assumed cost 
of compacted 
fill, per cubic 
yard  
($)

Unit cost 
of stated 
thickness 
liner  
($/ft2)

1.0 0.037037 3.00–5.00 0.11–0.19

1.5 0.055555 3.00–5.00 0.17–0.28

2.0 0.074074 3.00–5.00 0.22–0.37

3.0 0.111111 3.00–5.00 0.33–0.56

seepage, aesthetics, or other considerations. Many 
geomembrane	suppliers	may	be	able	to	provide	rough	
cost	estimates	based	on	the	size	and	locale	of	the	site.	
In estimating the cost of a compacted clay liner, one 
should	evaluate	the	volume	of	compacted	fill	involved	
in	a	liner	of	given	thickness.	Table	10D–1	illustrates	
a	cost	comparison	for	different	thicknesses	of	com-
pacted clay liners. If methods other than compacted 
clay	liners	are	used,	higher	unit	costs	may	apply	(table	
10D–2).	
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Soil properties

The	permeability	of	soils	at	the	boundary	of	a	waste	
storage pond depends on several factors. The most 
important	factors	are	those	used	in	soil	classification	
systems	such	as	the	Unified	Soil	Classification	System	
(USCS). The USCS groups soils into similar engineer-
ing	behavioral	groups.	The	two	most	important	factors	
that	determine	a	soil’s	permeability	are:

•	 The	percentage	of	the	sample	which	is	finer	
than	the	No.	200	sieve	size,	0.075	millimeters.	
The USCS has the following important catego-
ries	of	percentage	fines:

–	 Soils	with	less	than	5	percent	fines	are	the	
most	permeable	soils.

–	 Soils	with	between	5	and	12	percent	fines	
are	next	in	permeability.

–	 Soils	with	more	than	12	percent	fines	but	
less	than	50	percent	fines	are	next	in	order	
of	permeability.

–	 Soils	with	50	percent	or	more	fines	are	the	
least	permeable.

•	 The	plasticity	index	(PI)	of	soils	is	another	
parameter that strongly correlates with perme-
ability.	

When	considered	together	with	percent	fines,	a	group-
ing	of	soils	into	four	categories	of	permeability	is	
possible.	The	following	grouping	of	soils	is	based	on	
the	experience	of	NRCS	engineers.	It	may	be	used	
to classify soils at grade as an initial screening tool. 
Estimating	permeability	is	difficult	because	so	many	
factors determine the value for a soil. For in situ soils, 
the	following	factors,	in	addition	to	percent	fines	and	
PI,	affect	the	permeability	of	the	natural	soils:

•	 The	dry	density	of	the	natural	soil	affects	the	
permeability.	Soils	with	lower	dry	densities	
have higher percentage of voids (porosity) than 
more dense soils.

•	 Structure	strongly	affects	permeability.	Many	
clay soils, particularly those with PI values 
above	20,	develop	a	blocky	structure	from	
desiccation.	The	blocky	structure	creates	pref-
erential flow paths that can cause soils to have 
an	unexpectedly	high	permeability.	Albrecht	

and	Benson	(2001)	and	Daniel	and	Wu	(1993)	
describe	the	effect	of	desiccation	on	the	perme-
ability	of	compacted	clay	liners.

•	 While	not	considered	in	the	USCS,	the	chemical	
composition of soils with clay content strongly 
affects	permeability.	Soils	with	a	preponder-
ance of calcium or magnesium ions on the clay 
particles often have a flocculated structure that 
causes	the	soils	to	be	more	permeable	than	
expected	based	simply	on	percent	fines	and	
PI. Soils with a preponderance of sodium or 
potassium ions on the clay particles often have 
a dispersive structure that causes the soils to 
be	less	permeable	than	soils	with	similar	values	
of	percent	fines	and	PI.	The	NRCS	publication	
TR–28,	Clay	Minerals,	describes	this	as	follows:

 In clay materials, permeability is also in-
fluenced to a large extent by the exchange-
able ions present. If, for example, the Ca 
(calcium) ions in a montmorillonite are 
replaced by Na (sodium) ions, the per-
meability becomes many times less than 
its original value. The replacement with 
sodium ions reduces the permeability 
in several ways. For one thing, the so-
dium causes dispersion (disaggregation) 
reducing the effective particle size of the 
clay minerals. Another condition reduc-
ing permeability is the greater thickness 
of water adsorbed on the sodium-saturat-
ed montmorillonite surfaces which di-
minishes the effective pore diameter and 
retards the movement of fluid water.

•	 Alluvial	soils	may	have	thin	laminations	of	silt	
or sand that cause them to have a much higher 
horizontal	permeability	than	vertical	perme-
ability.	This	property	is	termed	anisotropy	and	
should	be	considered	in	flow	net	analyses	of	
seepage.

•	 Other	types	of	deposits	may	have	structure	
resulting from their mode of deposition. Loess 
soils	often	have	a	high	vertical	permeability	
resulting	from	their	structure.	Glacial	tills	may	
contain	fissures	and	cracks	that	cause	them	
to	have	a	permeability	higher	than	might	be	
expected	based	only	on	their	density,	percent	
fines	and	PI	of	the	fines.
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Permeability of soils

Table	10D–5	shows	an	approximate	range	of	estimated	
permeability	values	for	each	group	of	soils	in	table	
10D–3.	The	ranges	are	wide	because	the	classification	
system does not consider other factors that affect the 
permeability	of	soils,	such	as	the	electrochemical	na-
ture of the clay in the soils. Two soils may have similar 
percent	finer	than	the	No.	200	sieves	and	PI	values	
but	have	very	different	permeability	because	of	their	
different	electrochemical	makeup.	The	difference	can	
easily	be	two	orders	of	magnitude	(a	factor	of	100).	
The	most	dramatic	differences	are	between	clays	that	
have a predominance of sodium compared to those 
with a preponderance of calcium or magnesium. High 
calcium	soils	are	more	permeable	than	high	sodium	
soils.

Table	10D–5	summarizes	the	experienced	judgment	of	
NRCS	engineers	and	generally	used	empirical	correla-
tions of other engineers. The correlations are for in 
situ	soils	at	medium	density	and	without	significant	
structure or chemical content. Information shown in 
figure	10D–5	is	also	valuable	in	gaining	insight	into	the	
probable	permeability	characteristics	of	various	soil	
and	rock	types.

Some soils in groups III and IV may have a higher per-
meability	than	indicated	in	table	10D–5	because	they	
contain a high amount of calcium. High amounts of 
calcium result in a flocculated or aggregated structure 
in soils. These soils often result from the weathering 

The	grouping	of	soils	in	table	10D–3	is	based	on	the	
percent	passing	the	No.	200	sieve	and	PI	of	the	soils.	
Table	10D–4	is	useful	to	correlate	the	USCS	groups	to	
one	of	the	four	permeability	groups.	

Table 10D–3	 Grouping	of	soils	according	to	their	esti-
mated	permeability.	Group	I	soils	are	the	
most	permeable,	and	soils	in	groups	III	and	
IV	are	the	least	permeable	soils

Group Description

I Soils	that	have	less	than	20	percent	passing	a	No. 
 200 sieve and have a PI less than 5

II Soils	that	have	20	percent	or	more	passing	a	No. 
 200 sieve and have PI less than or equal to 15. 
 Also included in this group are soils with less 
	 than	20	percent	passing	the	No.	200	sieve	with 
	 fines	having	a	PI	of	5	or	greater

III Soils	that	have	20	percent	or	more	passing	a	No. 
	 200	sieve	and	have	a	PI	of	16	to	30

IV Soils	that	have	20	percent	or	more	passing	a	No. 
	 200	sieve	and	have	a	PI	of	more	than	30

Unified Soil
Classification
System
Group Name 

Soil permeability group number and  
occurrence of USCS group in that soil

I II III IV

CH N	 N	 S U

MH N	 S U S

CL N	 S U S

ML N	 U S N

CL–ML N	 A N	 N

GC	 N	 S U S

GM	 S U S S

GW	 A N	 N	 N

SM S U S S

SC N	 S U S

SW A N	 N	 N

SP A N N N

GP A N N N
1/	 ASTM	Method	D–2488	has	criteria	for	use	of	index	test	data	to	

classify	soils	by	the	USCS.
A	=	 Always	in	this	permeability	group
N	=	 Never	in	this	permeability	group
S	=		 Sometimes	in	this	permeability	group	(less	than	10	percent	of	

samples fall in this group)
U	=		 Usually	in	this	permeability	group	(more	than	90	percent	of	

samples fall in this group)

Table 10D–4	 Unified	classification	versus	soil	permeabil-
ity groups 1/

Table 10D–5	 Grouping	of	soils	according	to	their	esti-
mated	permeability.	Group	I	soils	are	the	
most	permeable	and	soils	in	groups	III	and	
IV	are	the	least	permeable	soils.

Group Percent 
fines

PI Estimated range of 
permeability, cm/s

Low High

I < 20 < 5 3×10–3 2

II
≥ 20 ≤ 15

5×10–6 5×10–4

< 20 ≥ 5
III ≥ 20 16 ≤ PI ≤ 30 5×10–8 1×10–6

IV ≥ 20 >	30 1×10–9 1×10–7
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Figure 10D–5	 Permeability	of	various	geologic	material	(from	Freeze	and	Cherry	1979)
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Representative materials

Very high High Moderate Low Very low

Clean gravel
(GP)

Soil
types

Rock
types

Clean sand, clean sand
and gravel mixes (GW,
GP, SW, SP, SM)

Cavernous and karst limestones
and dolomites, permeable basalts

Limestones, dolomites,
clean sandstones

Interbedded sandstones,
siltstones, and shales

Most massive
rocks, unfractured
and unweathered

Fine sand, silty sand
and gravel mixes (SP, SM,
GM, GW–GM, GP–GM,
SW–SM, SP–SM)

Any soil mass with joints, cracks or other macroporosity

Fractured igneous and metamorphic rocks

Silt, clay, and sand-silt-
clay mixes, organic silts,
organic clays (GM, GC,
SM, SC, MH, ML, ML–CL,
OL, OH, GW–GC, GC–GM,
SW-SC, SP–SC, SC–SM)

Massive clay, no
soil joints or
other macropores
(CL, CH)

of	high	calcium	parent	rock,	such	as	limestone.	Soil	
scientists	and	published	soil	surveys	are	helpful	in	
identifying these soil types. 

High	calcium	clays	should	usually	be	modified	with	
soil	dispersants	to	achieve	the	target	permeability	
goals.	Dispersants,	such	as	tetrasodium	polyphos-
phate, can alter the flocculated structure of these soils 
by	replacement	of	the	calcium	with	sodium.	Because	
manure contains salts, it can aid in dispersing the 
structure	of	these	soils,	but	design	should	not	rely	on	
manure as the only additive for these soil types. 

Soils	in	group	IV	usually	have	a	very	low	permeability.	
However,	because	of	their	sometimes	blocky	struc-
ture,	caused	by	desiccation,	high	seepage	losses	can	

occur	through	cracks	that	can	develop	when	the	soil	
is allowed to dry. These soils possess good attenua-
tion properties if the seepage does not move through 
cracks	in	the	soil	mass.	Soils	with	extensive	desicca-
tion	cracks	should	be	disked,	watered,	and	recom-
pacted to destroy the structure in the soils to provide 
an	acceptable	permeability.	The	depth	of	the	treatment	
required	should	be	based	on	design	guidance	given	in	
the section Construction considerations for com-
pacted clay liners.

High	plasticity	soils	like	those	in	group	IV	should	
be	protected	from	desiccation	in	the	interim	period	
between	construction	and	filling	the	pond.	Ponds	with	
intermittent storage should also consider protection 
for high PI liners in their design.
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In situ soils with acceptable  
permeability

For	screening	purposes,	NRCS	engineers	have	deter-
mined	that	if	the	boundaries	of	a	planned	pond	are	
underlain	on	the	sides	and	bottom	both	by	a	minimum	
thickness	of	natural	soil	in	permeability	groups	III	
or IV, the seepage from those ponds is generally low 
enough to cause no degradation of ground water. This 
assumes that soils do not have a flocculated structure. 
Unless State regulations or other requirements dictate 
a more conservative method of limiting seepage, it 
is	the	position	of	NRCS	that	special	design	measures	
generally are not necessary where agricultural waste 
storage ponds or treatment lagoons are constructed in 
these soils, provided that:

•	 at	least	2	feet	of	natural	soil	in	groups	III	or	IV	
occur	below	the	bottom	and	sides	of	the	lagoon

•	 the	soils	are	not	flocculated	(high	calcium)

•	 no	highly	unfavorable	geologic	conditions,	such	
as	karst	formations,	occur	at	the	site

•	 the	planned	depth	of	storage	is	less	than	15	feet

Ponds	with	more	than	15	feet	of	liquid	should	be	evalu-
ated	by	more	precise	methods.	If	the	permeability	and	
thickness	of	horizons	beneath	a	structure	are	known,	
the	predicted	seepage	quantities	may	be	estimated	
more precisely. In some cases, even though a site is 
underlain	by	2	feet	of	naturally	low	permeability	soil,	
an	acceptably	low	seepage	rate	satisfactory	for	some	
State	requirements	cannot	be	documented.	In	those	
cases, more precise testing and analyses are suggest-
ed. The accumulation of manure can provide a further 
decrease	in	the	seepage	rate	of	ponds	by	up	to	1	order	
of magnitude as noted previously. If regulations permit 
considering this reduction, a lower predicted seepage 
can	be	assumed	by	designers.	

Definition of pond liner

Compacted clay liner—Compacted clay liners are 
relatively impervious layers of compacted soil used 
to	reduce	seepage	losses	to	an	acceptable	level.	A	
liner	for	a	waste	impoundment	can	be	constructed	in	
several ways. When soil alone is used as a liner, it is 
often	called	a	clay	blanket	or	impervious	blanket.	A	

simple method of providing a liner for a waste storage 
structure is to improve a layer of the soils at the exca-
vated	grade	by	disking,	watering,	and	compacting	the	
soil	to	a	thickness	indicated	by	guidelines	in	following	
sections. Compaction is often the most economical 
method	for	constructing	liners	if	suitable	soils	are	
available	nearby	or	if	soils	excavated	during	construc-
tion	of	the	pond	can	be	reused	to	make	a	compacted	
liner.	Soils	with	suitable	properties	can	make	excellent	
liners,	but	the	liners	must	be	designed	and	installed	
correctly.	Soil	has	an	added	benefit	in	that	it	provides	
an attenuation medium for many types of pollutants. 
NRCS	Conservation	Practice	Standard	(CPS)	521D,	
Pond Sealing or Lining Compacted Clay Treatment, 
addresses general design guidance for compacted clay 
liners for ponds.

If	the	available	soils	cannot	be	compacted	to	a	density	
and	water	content	that	will	produce	an	acceptably	
low	permeability,	several	options	are	available,	and	
described	in	the	following	section.	The	options	involve	
soil	additives	to	improve	the	permeability	of	the	soils	
and adding liners constructed of materials other than 
natural soils. 

Treat the soil at grade with bentonite or a soil 
dispersant—Designers	must	be	aware	of	which	
amendment	is	appropriate	for	adding	to	specific	soils	
at	a	site.	In	the	past,	bentonite	has	been	inappropri-
ately used to treat clay soils and soil dispersants have 
inappropriately	been	used	to	treat	sands	with	a	small	
clay content.

The	following	guidelines	are	helpful	and	should	be	
closely followed.

•	 When	to	use	bentonite—Soils in groups I and 
II	have	unacceptably	high	permeability	because	
they	contain	an	insufficient	quantity	of	clay	or	
the clay in the soils is less active than required. 
A	useful	rule	of	thumb	is	that	soils	amenable	
for	treatment	with	bentonite	will	have	PI	values	
less	than	7,	or	they	will	have	less	than	30	per-
cent	finer	than	the	No.	200	sieve,	or	both.	

 Bentonite is essentially a highly concentrated 
clay	product	that	can	be	added	in	small	quanti-
ties	to	a	sand	or	slightly	plastic	silt	to	make	it	
relatively	low	in	permeability.	CPS	521C,	Pond	
Sealing or Lining Bentonite Treatment, covers 
this	practice.	NRCS	soil	mechanics	laboratories	
have found it important to use the same type 
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and	quality	of	bentonite	planned	for	construc-
tion	in	the	laboratory	permeability	tests	used	
to	design	the	soil-bentonite	mixture.	Both	the	
quality	of	the	bentonite	and	how	finely	ground	
the	product	is	before	mixing	with	the	soil	will	
strongly	affect	the	final	permeability	rate	of	the	
mixture.	It	is	important	to	work	closely	with	
both	the	bentonite	supplier	and	the	soil	testing	
facility when designing treated soil liners.

•	 When to use soil dispersants—Soils in 
groups	III	and	IV	may	have	unacceptably	high	
permeability	because	they	contain	a	prepon-
derance of calcium or magnesium on the clay 
particles.	Unfortunately,	field	or	lab	tests	to	
determine	when	soils	are	likely	to	have	this	
problem	are	not	available.	High	calcium	soils	
often occur when parent materials have exces-
sive calcium. Many soils developed from weath-
ering of limestone and gypsum may have this 
problem.	See	the	section	Design	and	construc-
tion of clay liners treated with soil dispersants, 
for more detail. Some States require the routine 
use	of	soil	dispersants	in	areas	that	are	known	
to have high calcium clay soils.

Use of concrete or synthetic materials such as 
geomembranes and geosynthetic clay liners 
(GCLs)—Concrete has advantages and disadvantages 
for use as a liner. A disadvantage is that it will not flex 
to conform to settlement or shifting of the earth. In ad-
dition,	some	concrete	aggregates	may	be	susceptible	
to	attack	by	continued	exposure	to	chemicals	con-
tained	in	or	generated	by	the	waste.	An	advantage	is	

that concrete serves as an excellent floor from which 
to scrape solids. It also provides a solid support for 
equipment such as tractors or loaders. 

Geomembranes	and	GCLs	are	the	most	impervious	
types of liners if designed and installed correctly. 
Care	must	be	exercised	both	during	construction	
and operation of the waste impoundment to prevent 
punctures and tears. The most common defects in 
these	liners	arise	from	problems	during	construction.	
Forming	seams	in	the	field	for	geomembranes	can	
require	special	expertise.	GCLs	have	the	advantage	
of	not	requiring	field	seaming,	but	overlap	is	required	
to	provide	a	seal	at	the	seams.	Geomembranes	must	
contain	ultraviolet	inhibitors	if	exposed	to	sunlight.	
Designs	should	include	provision	for	protection	from	
damage during cleaning operations. Concrete pads, 
double	liners,	and	soil	covering	are	examples	of	pro-
tective	measures.	Figure	10D–6	shows	an	agricultural	
waste	storage	facility	with	a	geomembrane	liner	with	
ultraviolet	inhibitors.

When a liner should be considered

A	constructed	liner	may	be	required	if	any	of	the	con-
ditions listed are present at a planned impoundment.

Proposed impoundment is located where any 
underlying aquifer is at a shallow depth and not 
confined and/or the underlying aquifer is a do-
mestic or ecologically vital water supply—State or 
local regulations may prevent locating a waste storage 
impoundment	within	a	specified	distance	from	such	
features.	Even	if	the	pond	bottom	and	sides	are	under-
lain	by	2	feet	of	naturally	low	permeability	soil,	if	the	
depth of liquid in the pond is high enough, computed 
seepage	losses	may	be	greater	than	acceptable.	The	
highest level of investigation and design is required 
on	sites	like	those	described.	This	will	ensure	that	
seepage will not degrade aquifers at shallow depth or 
aquifers that are of vital importance as domestic water 
sources.

Excavation boundary of an impoundment is un-
derlain by less than 2 feet of suitably low perme-
ability soil, or an equivalent thickness of soil 
with commensurate permeability, over bedrock—
Bedrock	that	is	near	the	soil	surface	is	often	fractured	
or	jointed	because	of	weathering	and	stress	relief.	

Figure 10D–6 Agricultural waste storage impoundment 
lined	with	a	geomembrane	(Photo credit 
NRCS)
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Many	rural	domestic	and	stock	water	wells	are	devel-
oped	in	fractured	rock	at	a	depth	of	less	than	300	feet.	
Some	rock	types,	such	as	limestone	and	gypsum,	may	
have	wide,	open	solution	channels	caused	by	chemi-
cal	action	of	the	ground	water.	Soil	liners	may	not	be	
adequate	to	protect	against	excessive	leakage	in	these	
bedrock	types.	Concrete	or	geomembrane	liners	may	
be	appropriate	for	these	sites.	However,	even	hairline	
openings	in	rock	can	provide	avenues	for	seepage	to	
move	downward	and	contaminate	subsurface	water	
supplies.	Thus,	a	site	that	is	shallow	to	bedrock	can	
pose	a	potential	problem	and	merits	the	consideration	
of	a	liner.	Bedrock	at	a	shallow	depth	may	not	pose	
a	hazard	if	it	has	a	very	low	permeability	and	has	no	
unfavorable	structural	features.	An	example	is	massive	
siltstone.

Excavation boundary of an impoundment is 
underlain by soils in group I—Coarse grained soils 
with	less	than	20	percent	low	plasticity	fines	gener-
ally	have	higher	permeability	and	have	the	potential	
to allow rapid movement of polluted water. The soils 
are	also	deficient	in	adsorptive	properties	because	
of	their	lack	of	clay.	Relying	solely	on	the	sealing	
resulting from manure solids when group I soils are 
encountered	is	not	advisable.	While	the	reduction	in	
permeability	from	manure	sealing	may	be	one	order	
of	magnitude,	the	final	resultant	seepage	losses	are	
still	likely	to	be	excessive,	and	a	liner	should	be	used	
if	the	boundaries	of	the	excavated	pond	are	in	this	soil	
group.

Excavation boundary of an impoundment is 
underlain by some soils in group II or prob-
lem soils in group III (flocculated clays) and 
group IV (highly plastic clays that have a blocky 
structure)—Soils in group II may or may not require 
a	liner.	Documentation	through	laboratory	or	field	
permeability	testing	and	computations	of	specific	
discharge (unit seepage quantities) is advised. Higher 
than	normal	permeability	can	occur	when	soils	in	
group	III	or	IV	are	flocculated	or	have	a	blocky	struc-
ture. These are special cases, and most soils in groups 
III and IV will not need a liner provided the natural 
formation	is	thick	enough	to	result	in	acceptable	pre-
dicted seepage quantities. 

These conditions do not always dictate a need for a 
liner.	Specific	site	conditions	can	reduce	the	potential	
risks	otherwise	indicated	by	the	presence	of	one	of	
these conditions. For example, a thin layer of soil over 

high	quality	rock,	such	as	an	intact	shale,	is	less	risky	
than	if	the	thin	layer	occurs	over	fractured	or	fissured	
rock.	If	the	site	is	underlain	by	many	feet	of	intermedi-
ate	permeability	soil,	that	site	could	have	equivalent	
seepage	losses	as	one	underlain	by	only	2	feet	of	low	
permeability	soil.

Some	bedrock	may	contain	large	openings	caused	by	
solutioning	and	dissolving	of	the	bedrock	by	ground	
water.	Common	types	of	solutionized	bedrock	are	
limestone	and	gypsum.	When	sinks	or	openings	are	
known	or	identified	during	the	site	investigation,	these	
areas	should	be	avoided	and	the	proposed	facility	lo-
cated elsewhere. However, when these conditions are 
discovered during construction or alternate sites are 
not	available,	concrete	or	geosynthetic	liners	may	be	
required,	but	only	after	the	openings	have	been	prop-
erly	cleaned	out	and	backfilled	with	concrete.

Specific discharge

Introduction

One way to require a minimal design at a site is to re-
quire	a	minimum	thickness	of	a	given	permeability	soil	
for a natural or constructed liner. An example of this 
would	be	to	require	that	a	clay	liner	constructed	at	a	
waste	storage	pond	should	be	at	least	1	foot	thick,	and	
the	soil	should	have	a	coefficient	of	permeability	of	 
1×10–7 centimeters per second or less. 

However,	using	only	permeability	and	thickness	of	a	
boundary	horizon	as	a	criterion	ignores	the	effect	of	
the depth of liquid on the predicted quantity of seep-
age from an impoundment. Using this approach would 
mean	that	the	same	design	would	be	used	for	a	site	
with	30	feet	of	water	as	one	with	8	feet	of	water,	for	
instance. A more rational method for stating a limit-
ing design requirement is to compute seepage using 
Darcy’s	law	for	a	unit	area	of	the	pond	bottom.	

A rational method of comparing design alternatives at 
a given site is needed. Such a method allows design-
ers to evaluate the effect of changing one or more of 
the design elements in a site on the predicted seepage 
quantities. This document presents methods for com-
puting	the	term	“specific	discharge”	to	use	in	compar-
ing alternatives and to document a given design goal 
for	a	site.	Specific	discharge	is	defined	as	unit	seepage.	
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It	does	not	reflect	the	total	seepage	from	a	site,	but	
rather provides a value of seepage per square unit area 
of	pond	bottom.

This	document	uses	calculations	of	specific	discharge	
to compare design alternatives and to determine if a 
given design meets regulatory requirements and guide-
lines. In some cases, the total seepage from a pond 
may	be	of	interest,	particularly	for	larger	ponds	in	
highly environmentally sensitive environments. 

In	those	cases,	more	elaborate	three-dimensional	seep-
age	computations	using	sophisticated	finite-element	
computer	programs	may	be	warranted.	It	is	outside	
the	scope	of	this	document	to	describe	these	types	of	
analyses. Specialists who are experienced in using the 
complex software used for these computations should 
be	consulted.

The parameters that affect the seepage from a pond 
with a natural or constructed clay liner are:

•	 The	size	of	the	pond—The	total	bottom	area	
and area of the exposed sides of the pond hold-
ing the stored waste solids and liquids.
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Figure 10D–7	 Conversion	of	permeability	in	layered	profile	to	single	value

•	 The	thickness	of	low	permeability	soil	at	the	
excavation limits of the pond—For design, the 
thickness	of	the	soil	at	the	bottom	of	the	pond	
is	often	used	because	that	is	where	seepage	is	
likely	to	be	highest.	In	some	cases,	however,	
seepage from the sides of the pond may also 
be	an	important	factor.	Seepage	from	the	sides	
of	ponds	is	best	analyzed	using	finite	element	
flow net programs. In some cases, rather than a 
single	horizon,	multiple	horizons	may	be	pres-
ent.

•	 The	depth	of	liquid	in	the	pond—The	depth	of	
liquid at the top of the reservoir when pumping 
should commence is normally used.

•	 The	coefficient	of	permeability	of	the	soil	
forming	the	bottom	and	sides	of	the	pond—In	
layered systems, an average or weighted per-
meability	may	be	determined	as	shown	in	figure	
10D–7.	
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Example	10D–1	shows	how	to	convert	a	multiple	layer	
system	into	a	single	equivalent	permeability.	Using	this	
method	allows	a	designer	to	compute	specific	dis-
charge when several horizons of constructed or natu-
ral	soils	occur	below	a	site.

Example 10D–1
The	excavated	pond	is	underlain	by	15	feet	of	soil	
consisting	of	three	different	horizons	(fig.	10D–8).	The	
thickness	and	permeability	of	each	horizon	is	shown	in	
the	sketch.	Compute	the	average	vertical	permeability	
of the 15 feet of soil. 

Definition of specific discharge

The	term	“specific	discharge”	has	been	coined	to	
denote the unit seepage that will occur through the 
bottom	of	a	pond	with	a	finite	layer	of	impervious	soil.	
Specific	discharge	is	the	seepage	rate	for	a	unit	cross-
sectional	area	of	a	pond.	It	is	derived	from	Darcy’s	law	
as	follows.	First,	consider	Darcy’s	law.	

 Q k i A= × ×

For a pond with either a natural or constructed liner, 
the hydraulic gradient is the term i in the equation, and 
it	is	defined	in	figure	10D–9	as	equal	to	(H+d)/d.	

Given:  
The	Darcy’s	law	for	this	situation	becomes:

 
Q k

H d

d
A= ×

+
×

where:
Q =  total seepage through area A (L3/T)
k	 =		coefficient	of	permeability	(hydraulic	 

conductivity) (L3/L2/T)
i =  hydraulic gradient (L/L)
H	 =	vertical	distance	measured	between 

the top of the liner and top of the 
liquid storage of the waste impound- 
ment	(fig.	10D–9)	 (L)

d	 =	thickness	of	the	soil	liner	(fig.	10D–9)	 (L)
A = cross-sectional area perpendicular to 

flow (L2)
L = length
T = time

Figure 10D–9	 Definition	of	terms	for	clay	liner	and	seepage	calculations
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Figure 10D–8	 Idealized	soil	profile	for	example	10D–1
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Rearrange	terms:

 

Q

A

k H d

d
=

+( )

 (L/T)

By definition, unit seepage or specific discharge, is 
Q÷A. The symbol ν is used for specific discharge:

 
ν =

+k H d

d

( )

 (L3/L2/T)

Specific	discharge	may	be	confused	with	perme-
ability	because	the	units	are	the	same.	In	the	metric	
system,	specific	discharge	and	permeability	are	often	
expressed in units of centimeters per second. The 
actual	units	are	cubic	centimeters	of	flow	per	square	
centimeter	of	cross	section	per	second,	but	this	re-
duces	to	centimeters	per	second.	Specific	discharge	is	
different	than	permeability	because	specific	discharge	
is an actual flow rate of liquid through a cross section 
of	a	soil	mass,	whereas	permeability	is	a	property	of	
the	soil	mass	itself.	Permeability	is	independent	of	the	
hydraulic gradient in a particular site, whereas spe-
cific	discharge	accounts	for	both	permeability	of	the	
soil and the gradient causing the flow, as illustrated in 
figure	10D–9.	Because	hydraulic	gradient	is	dimension-
less,	the	units	of	specific	discharge	and	permeability	
are then the same.

Because	specific	discharge	expressed	as	L/T	has	the	
same	units	as	velocity,	specific	discharge	is	often	
misunderstood as representing the average rate or 
velocity	of	water	moving	through	a	soil	body	rather	
than a quantity rate flowing through the soil. Because 
the water flows only through the soil pores, the actual 
cross-sectional	area	of	flow	is	computed	by	multiply-
ing	the	soil	cross	section	(A)	by	the	porosity	(n).	The	
seepage velocity is then equal to the unit seepage or 
specific	discharge,	ν,	divided	by	the	porosity	of	the	
soil, n. Seepage velocity = (ν/n). In compacted liners, 
the	porosity	usually	ranges	from	0.3	to	0.5.	The	result	
is that the average linear velocity of seepage flow is 
two	to	three	times	the	specific	discharge	value.	The	
units of seepage velocity are L/T.

To	avoid	confusion	between	specific	discharge	and	
permeability,	a	strong	recommendation	is	to	use	differ-
ent	units	for	specific	discharge	than	for	the	coefficient	
of	permeability.	Common	units	for	permeability	are	
recommended	to	be	in	feet	per	day	or	centimeters	
per	second.	Units	for	specific	discharge	should	be	in	

gallons per acre per day, acre-feet per acre per day, or 
acre-inches per acre per day.

To	illustrate	a	typical	computation	for	specific	dis-
charge, assume the following:

•	 A	site	has	a	liquid	depth	of	12	feet.

•	 The	site	is	underlain	by	2	feet	of	soil	that	has	
a	coefficient	of	permeability	of	1×10–6 centi-
meters per second (assume that a sample was 
obtained	at	the	grade	of	the	pond	and	sent	to	a	
laboratory	where	a	flexible	wall	permeability	
test was performed on it).

•	 Compute	the	specific	discharge,	ν. First, the 
coefficient	of	permeability	may	be	converted	
to	units	of	feet	per	day	by	multiplying	the	given	
units	of	centimeters	per	second	by	2,835.	

 
k = ×( ) × =5 10 2 835 0 000142-8  cm/s  ft/d, .

	 Then,	the	specific	discharge	ν is computed as 
follows:

 

ν = ×
+

= ×
+

≅
≅

k
H d

d

0 002835
12 2

2
0 02

0 02

.

.

.

 ft /ft /d

 ft/d

3 2

Conversion	factors	for	specific	discharge	are	given	in	
table	10D–6.

To convert from To units of Multiply by

ft3/ft2/d in3/in2/d 12

ft3/ft2/d gal/acre/d 325,829

in3/in2/d gal/acre/d 27,152.4

in3/in2/d cm3/cm2/s 2.94×10–5

cm3/cm2/s gal/acre/d 9.24×108

cm3/cm2/s in3/in2/d 34,015

cm3/cm2/s ft3/ft2/d 2,835

Table 10D–6	 Conversion	factors	for	specific	discharge
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 k = ×( ) × =5 10 2 835 0 000142-8  cm/s  ft/d, .  

	 Then,	the	specific	discharge	ν is computed as 
follows:

 

ν = ×
+

= × ×
+

≅
≅

−

k
H d

d

1 42 10
15 2

2

0 0012

0

4.

.

.

 ft/d
 ft  ft

 ft

 ft /ft /d3 2

00012 ft/d

Converting this into units of gallons per acre per day:

 0 0012 325 829 393. , ft/d  gal/acre/d× ≅

Table	10D–7	lists	typical	specific	discharge	values	
used	by	State	regulatory	agencies.	Requirements	vary	
from State to State. Individual designers may regard 
minimum requirements as too permissive. Some States 
permit a designer to assume that the initial computed 
seepage	rate	will	be	reduced	in	the	future	by	an	order	
of	magnitude	by	taking	credit	for	a	reduction	in	perme-
ability	resulting	from	manure	sealing.	The	State	or	lo-
cal	regulations	should	be	used	in	design	for	a	specific	
site.

If one assumes at least one order of magnitude of 
reduction	in	permeability	will	occur,	the	initial	specific	
discharge	can	be	10	times	greater,	and	the	final	value	
for	specific	discharge	will	approach	a	tenth	of	the	
initial rate after sealing.

Design of compacted clay liners

If	a	site	does	not	have	a	sufficient	thickness	of	in situ 
low	permeability	soil	horizons	to	limit	seepage	to	an	
acceptably	low	value,	a	clay	liner	may	be	required.	
Some State regulations may also require a constructed 
clay liner regardless of the nature of the in situ soils 
at	a	site.	Regulations	sometimes	require	a	specific	
thickness	of	a	compacted	soil	with	a	documented	
permeability	of	a	given	value.	An	example	of	this	is	
a State requirement that a waste storage pond must 
have	in	the	bottom	and	sides	of	the	pond	at	least	2	feet	
of	compacted	clay	with	a	documented	coefficient	of	
permeability	of	1×10–7 centimeters per second.

Clay	liners	may	also	be	designed	based	on	a	stated	
allowable	specific	discharge	value.	Computations	

To	convert	the	computed	specific	discharge	in	the	ex-
ample	into	units	of	gallons	per	acre	per	day	and	cubic	
inches per square inch per day (in/d), use conversion 
factors	given	in	table	10D–6.

• 0.02 foot per day×325,829 ≅ 6,500 gallons per acre 
per day

• 0.02 foot per day×12 = 0.24 cubic inch per square 
inch per day

A	variety	of	guidelines	have	been	used	and	regulatory	
requirements	stated	for	specific	discharge.	Usually,	
guidelines	require	the	specific	discharge	for	a	given	
waste	storage	structure	to	be	no	higher	than	a	stated	
value. The following example demonstrates the unit 
seepage that will result from a typical size animal 
waste storage lagoon or storage pond with 2 feet of 
either very good natural soil or a very well construct-
ed,	2-foot-thick	clay	liner	in	the	bottom	of	the	lagoon.	
A	practical	lower	limit	for	the	assumed	permeability	
of a compacted clay or a very good natural liner is a 
coefficient	of	permeability	equal	to	5×10–8 centimeters 
per	second.	This	is	based	on	considerable	literature	
on	field	and	laboratory	tests	for	compacted	clay	liners	
used	in	sanitary	landfills.

The	specific	discharge	for	this	ideal	condition	follows,	
assuming:

•	 The	pond	has	a	liquid	depth	of	15	feet.

•	 The	site	is	underlain	by	2	feet	of	soil	(either	a	
natural layer or a constructed clay liner) that 
has	a	coefficient	of	permeability	of	5×10–8 cen-
timeters per second

•	 Compute	the	specific	discharge,	ν. First, the 
coefficient	of	permeability	is	converted	to	units	
of	feet	per	day	by	multiplying	the	given	units	of	
centimeters	per	second	by	2,835.	Then,	

Example specific  
discharge value

Equivalent value in  
gallons per acre per day

1/56	in3/in2/d 485

1/8 in3/in2/d 3,394

1/4	in3/in2/d 6,788

1×10–6 cm3/cm2/s 924

Table 10D–7	 Typical	requirement	for	specific	discharge	
used	by	State	regulatory	agencies
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may	be	performed	as	detailed	in	following	sections	
to	determine	a	design	that	will	meet	a	design	specific	
discharge goal.

Detailed design steps for clay liners

The suggested steps for design of a compacted clay or 
amendment-treated liner are:

Step 1—Size the impoundment to achieve the 
desired	storage	requirements	within	the	available	
construction limits and determine this depth or 
the height, H, of storage needed.

Step 2—Determine	(from	a	geologic	investiga-
tion)	the	thickness	and	permeability	of	horizons	of	
natural	clay	underlying	the	bottom	of	the	planned	
excavated pond. Investigate to a minimum of 2 
feet	below	the	planned	grade	of	the	pond	or	to	
depths	required	by	State	regulations,	if	greater.	If	
natural	low	permeability	horizons	at	least	2	feet	
thick	or	an	equivalent	thickness	of	soil	with	dif-
ferent	permeability	do	not	underlie	the	site,	as-
sume that a compacted clay liner (with or without 
amendments)	will	be	constructed.	The	liner	may	
be	constructed	of	soils	from	the	excavation	if	they	
are	suitable	for	use,	or	soil	may	be	imported	from	
a	nearby	borrow	source.

Step 3—Measure	or	estimate	the	permeability	
of the natural horizons or the compacted liner 
planned at the site. Use procedures shown in ex-
ample	10D–1	to	obtain	a	weighted	permeability	for	
the natural horizons.

Step 4—Compute	the	specific	discharge	using	
the	values	of	head	in	the	pond	and	thickness	
of natural horizons and their equivalent perme-
ability	in	the	specific	discharge	equation.	If	State	
or local regulations provide a required value for 
allowable	specific	discharge,	design	on	the	basis	
of those regulations. Currently, State regulations 
for	specific	discharge	range	from	a	low	of	about	
500	gallons	per	acre	per	day	(1/56	inch	per	day)	
to	a	high	of	about	6,800	gallons	per	acre	per	day	
(1/4	inch	per	day).	If	no	regulations	exist,	a	value	
of	5,000	gallons	per	acre	per	day	may	be	used.	If	
a designer feels that more conservative limiting 
seepage	is	advisable,	that	rate	should	be	used	in	
computations. It is seldom technically or economi-

cally	feasible	to	meet	a	design	specific	discharge	
value of less than 500 gallons per acre per day 
using compacted clay liners or amendment-treated 
soil liners. To achieve lower values of unit seepage 
usually requires synthetic liners, concrete liners, 
or	aboveground	storage	tanks.

Step 5—If	the	computed	specific	discharge	meets	
design	objectives,	the	site	is	satisfactory	without	
additional	design	and	may	be	designed	and	con-
structed.

Step 6—If	the	computed	specific	discharge	at	the	
site	does	not	meet	design	objectives,	use	either	
method A or method B shown in following sec-
tions to design a compacted clay liner or a liner 
with soil amendment.

Notes to design steps:

•	 The	calculated	thickness	of	the	soil	liner	re-
quired is sensitive to the relative values of soil 
permeability	and	the	assumed	allowable	spe-
cific	discharge	value.

•	 The	best	and	most	economical	way	to	reduce	
the	required	liner	thickness	is	by	reducing	the	
soil’s	permeability.	Liner	permeability	may	be	
reduced	by	compacting	soils	to	a	higher	degree,	
compacting them at a higher water content, 
and	by	using	an	appropriate	additive	such	as	
bentonite	or	soil	dispersants.

•	 By	using	higher	compaction	water	contents	and	
compacting soils to a high degree of saturation, 
permeability	often	can	be	reduced	by	a	factor	
of 1/100.

•	 The	liner	soil	must	be	filter	compatible	with	the	
natural foundation upon which it is compacted. 
Filter	compatibility	is	determined	by	criteria	in	
NEH	633,	chapter	26.	As	long	as	the	liner	soil	
will not pipe into the foundation, the magnitude 
of hydraulic gradient across the liner need not 
be	limited.	

•	 Filter	compatibility	is	most	likely	to	be	a	sig-
nificant	problem	when	a	liner	is	constructed	di-
rectly on top of very coarse soil, such as poorly 
graded gravels and gravelly sands.

•	 The	minimum	recommended	thickness	of	a	
compacted	clay	liner	is	given	in	CPS	521D.	The	
minimum	thickness	varies	with	the	depth	of	
liquid in the pond. 
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•	 Clay	liners	constructed	by	mixing	bentonite	
with the natural soils at a site should have a 
minimum	thickness	shown	in	CPS	521C.	These	
minimum	thicknesses	are	based	on	construc-
tion considerations rather than calculated 
values	for	liner	thickness	requirement	from	the	
specific	discharge	equations.	In	other	words,	
if	the	specific	discharge	equations	indicate	a	
7-inch	thickness	of	compacted	bentonite-treat-
ed liner is needed to meet suggested seepage 
criteria,	the	CPS	521C	could	dictate	a	thicker	
liner.	That	guidance	should	be	considered	in	
addition	to	the	specific	discharge	computations.

•	 Natural	and	constructed	liners	must	be	protect-
ed	against	damage	by	mechanical	agitators	or	
other equipment used for cleaning accumulated 
solids	from	the	bottom	of	the	structure.	Lin-
ers	should	also	be	protected	from	the	erosive	
forces of waste liquid flowing from pipes during 
filling	operations.	CPSs	provide	guidance	for	
protection.

•	 Soil	liners	may	not	provide	adequate	confi-
dence against ground water contamination 
if	foundation	bedrock	beneath	the	pond	con-
tains large, connected openings. Collapse of 
overlying soils into the openings could occur. 
Structural liners of reinforced concrete or 
geomembranes	should	be	considered	because	
the potential hazard of direct contamination of 
ground	water	is	significant.

•	 Liners	should	be	protected	against	puncture	
from	animal	traffic	and	roots	from	trees	and	
large	shrubs.	The	subgrade	must	be	cleared	of	
stumps	and	large	angular	rocks	before	con-
struction of the liner.

•	 If	a	clay	liner	(or	a	bentonite-treated	liner)	is	
allowed	to	dry,	it	may	develop	drying	cracks	or	
a	blocky	structure.	Desiccation	can	occur	dur-
ing	the	initial	filling	of	the	waste	impoundment	
and later when the impoundment is emptied for 
cleaning	or	routine	pumping.	Disking,	adding	
water, and compaction are required to destroy 
this	structure	created	by	desiccation.	A	protec-
tive	insulating	blanket	of	less	plastic	soil	may	
be	effective	in	protecting	underlying	more	plas-
tic soil from desiccation during these times the 
liner is exposed. CPSs address this important 
consideration.

•	 Federal	and	State	regulations	may	be	more	
stringent than the design guidelines given, and 
they	must	be	considered	in	the	design.	Exam-
ples later in this section address consideration 
of alternative guidelines. 

Two methods for designing constructed 
clay liner

Two	methods	for	designing	a	clay	liner	are	available.	
In	method	A,	designers	begin	with	an	assumed	or	
required	value	for	allowable	specific	discharge.	Using	
the	depth	of	liquid	storage	in	the	pond	and	known	or	
estimated	values	of	the	liner’s	coefficient	of	perme-
ability,	a	required	thickness	of	liner	is	computed.	If	the	
value	obtained	is	unrealistic,	different	values	for	the	
liner	permeability	are	evaluated	to	determine	what	val-
ues	produce	a	desirable	thickness	of	liner.	CPSs	also	
determine	minimum	liner	thicknesses.

In	method	B,	designers	begin	with	a	desired	thickness	
of	liner	and	an	assumed	or	required	value	for	specific	
discharge. Using the depth of liquid storage in the 
pond	and	the	desired	thickness	of	liner,	a	required	
coefficient	of	permeability	for	the	liner	is	computed.	
If	the	value	obtained	is	unrealistic,	different	values	for	
the	liner	thickness	are	evaluated	to	determine	what	
values	produce	an	achievable	permeability.	Coordinat-
ing	with	soil	testing	laboratories	is	helpful	in	evaluat-
ing alternatives that can provide the required perme-
ability	for	the	liner.

Each	of	these	methods	is	illustrated	with	detailed	
design examples as follows:

Method	A—Using	assumed	values	for	the	coefficient	
of	permeability	of	a	compacted	clay	based	on	labo-
ratory tests of the proposed liner soil, compute the 
required	thickness	of	a	liner	to	meet	the	given	specific	
discharge	design	goal.	In	the	absence	of	more	restric-
tive	State	regulations,	assume	an	acceptable	specific	
discharge of 5,000 gallons per acre per day. 

The	required	thickness	of	a	compacted	liner	can	be	
determined	by	algebraically	rearranging	the	specific	
discharge	equation,	as	follows.	Terms	have	been	previ-
ously	defined.

 
d

k H

k
=

×
−ν
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Using	English	system	units,	substituting	the	given	
values	for	H	and	k,	assuming	an	allowable	specific	
discharge, ν,	of	0.010417	foot	per	day,	then	

 
d =

×
−

=
0 00184 12

0 010417 00184
2 6

.

. .
.

 ft/d  ft

 ft/d  ft/d
 ft

CPS	521D	requires	a	pond	with	a	depth	of	water	
of	12	feet	to	have	a	minimum	thickness	liner	of	1	
foot,	so	the	2.6	foot	requirement	governs.

Step 2—Assume that regulations permit consider-
ing	the	benefit	of	seepage	reduction	for	manure	
sealing of one order of magnitude. Then, the de-
sign	specific	discharge	may	be	10	times	the	stated	
permissible	value	because	manure	sealing	will	
reduce	the	initial	seepage	to	the	stated	acceptable	
limits	in	a	year	or	so	of	operation.	The	allowable	
specific	discharge	then	becomes:	

 
10 0 010417 0 10417× ( ) =. . ft/d  ft/d

Substituting	into	the	equation	solving	for	thick-
ness of liner required:
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×
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Conclusion:  
A compacted clay liner this thin is impractical. In this 
case,	the	minimum	thickness	liner	required	in	CPS	
521D	of	1	foot	would	be	used	for	design.

Method	B—Using a given value for depth of liquid in 
the	pond,	assumed	values	for	the	thickness	of	a	com-
pacted	clay	based	on	construction	considerations,	CPS	
521D	requirements,	State	regulations,	or	the	prefer-
ence	of	the	designer,	compute	the	required	permeabili-
ty	of	a	liner	to	meet	the	given	specific	discharge	design	
goal.	In	the	absence	of	more	restrictive	State	regula-
tions,	assume	an	acceptable	specific	discharge	of	5,000	
gallons	per	acre	per	day.	The	required	permeability	of	
a	compacted	liner	can	be	determined	by	algebraically	
rearranging	the	specific	discharge	equation	as	follows.	
Terms	have	been	previously	defined.

 
k

d

H d
=

×
+

ν

Note:	If	the	k	value	assumed	for	the	liner	is	equal	to	or	
greater	than	the	assumed	allowable	specific	discharge,	
meaningless results are attained for d, the calculated 
thickness	of	the	liner	in	the	last	equation.	The	reason	
is	that	the	denominator	would	be	zero,	or	a	negative	
number.	Another	way	of	stating	this	is	that	the	allow-
able	specific	discharge	goal	cannot	be	met	if	the	liner	
soils	have	k	values	equal	to	or	larger	than	the	assumed	
allowable	specific	discharge,	in	consistent	units.	Note	
also	that	CPS	521D	has	requirements	for	minimum	
thickness	of	compacted	clay	liners.	If	the	computed	
value	for	the	required	thickness	is	less	than	that	given	
in	CPS	521D,	then	the	values	in	the	CPS	must	be	used.

Example 10D–2—Design a clay liner using 
method A
Given: 
Site design has a required depth of waste liquid, H, in 
the constructed waste impoundment of 12 feet. A soil 
sample	was	obtained	and	submitted	to	a	soil	mechan-
ics	laboratory	for	testing.	A	permeability	test	on	a	sam-
ple	of	proposed	clay	liner	soil	resulted	in	a	permeabil-
ity	value	of	6.5×10–7	centimeters	per	second	(0.00184	
ft/d) for soils compacted to 95 percent of maximum 
Standard Proctor dry density at a water content 2 
percent wet of optimum. The State requirement for 
the	site	requires	a	specific	discharge	no	greater	than	
an eighth of an inch per day. Compute the required 
thickness	of	liner	to	be	constructed	of	soil	having	
the	stated	permeability	that	will	achieve	this	specific	
discharge.	What	would	be	the	effect	of	manure	sealing	
on this computed requirement, if assumed reduction of 
seepage from manure sealing were permitted and was 
elected for use in the design?

Solution:
Step 1—First,	convert	the	required	specific	dis-
charge	into	the	same	units	as	will	be	used	for	the	
coefficient	of	permeability.	Using	values	for	per-
meability	of	feet	per	day,	convert	the	stated	eighth	
of	an	inch	per	day	specific	discharge	requirement	
into	feet	per	day.	To	convert,	divide	an	eighth	by	
12	to	obtain	a	specific	discharge	requirement	of	
0.010417	foot	per	day.	It	is	given	that	the	k	value	
at	the	design	density	and	water	content	is	0.00184	
foot per day. Calculate the required minimum 
thickness	of	compacted	liner	as	follows:

The equation for required d is:

 
d

k H

k
=

×
−ν
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If	the	computed	value	for	the	required	permeability	is	
less	than	5×10–8	centimeters	per	second	(1.4×10–4 ft/d), 
NRCS	engineers’	experience	is	that	lower	values	are	
not	practically	obtainable	and	a	thicker	liner	or	syn-
thetic	liners	should	be	used	to	achieve	design	goals.

Example 10D–3—Designer a clay liner using 
method B
Given:
Site design has a required depth of waste liquid, H, in 
the constructed waste impoundment of 19 feet. CPS 
521D	requires	a	liner	that	is	at	least	18	inches	(1.5	feet)	
thick.	The	site	is	in	a	State	that	allows	NRCS	design	
guidance	of	5,000	gallons	per	acre	per	day	to	be	used	
in	the	design.	The	NRCS	guidance	assumes	that	ma-
nure sealing will reduce this seepage value further and 
no	additional	credit	should	be	taken.	

Solution:
Step 1	 First,	convert	the	required	specific	dis-
charge	into	the	same	units	as	will	be	used	for	the	
coefficient	of	permeability.	Using	values	for	per-
meability	of	feet	per	day,	convert	the	stated	5,000	
gallons	per	acre	per	day	specific	discharge	require-
ment into feet per day. To convert using conversions 
shown	in	table	10D–6,	divide	5,000	by	325,829	to	
obtain	a	specific	discharge	requirement	of	0.0154	
foot	per	day.	The	thickness	of	liner	is	given	to	be	1.5	
feet.	Calculate	the	required	coefficient	of	permeabil-
ity of the compacted liner as follows:

 
k

d

H d
=

×
+

ν

Using	English	system	units,	substituting	the	given	
values for H of 19 feet and for d of 1.5 feet, assum-
ing	an	allowable	specific	discharge,	ν,	of	0.0154	
foot per day, then: 
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19 1 5
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Convert	to	centimeters	per	second	by	multiplying	by	
2,835.

 k = × ×−1 1 10 2 8353. ,ft/d

 
k = × −4 0 10 7.  cm/s

Step 2—The designer should coordinate testing 
with	a	laboratory	to	determine	what	combinations	
of degree of compaction and placement water 
content	will	result	in	this	value	of	permeability	or	
less.	Design	of	the	1.5-foot-thick	liner	may	proceed	
with those recommendations.

Construction considerations for  
compacted clay liners

Thickness of loose lifts

The	permissible	loose	lift	thickness	of	clay	liners	
depends on the type of compaction roller used. If a 
tamping or sheepsfoot roller is used, the roller teeth 
should	fully	penetrate	through	the	loose	lift	being	com-
pacted into the previously compacted lift to achieve 
bonding	of	the	lifts.	A	loose	lift	thickness	of	9	inches	is	
commonly	used	by	NRCS	specifications.	If	the	feet	on	
rollers cannot penetrate the entire lift during compac-
tion,	longer	feet	or	a	thinner	lift	should	be	specified.	
A	loose	layer	thickness	of	6	inches	may	be	needed	for	
some tamping rollers that have larger pad type feet 
that do not penetrate as well. 

Method of construction

Several	methods	are	available	for	constructing	a	clay	
liner	in	an	animal	waste	impoundment.	Each	has	its	
advantages	and	disadvantages	as	described	in	follow-
ing sections. A designer should consider the experi-
ence of local contractors and the relative costs of the 
methods in selecting the most appropriate design for a 
given	site.	The	thickness	of	the	planned	soil	liner,	haul	
distance, planned side slopes for the pond, and other 
factors	also	guide	a	designer’s	decision	on	the	best	
method to use. 

Bathtub construction
This method of construction consists of a continuous 
thickness	of	soil	compacted	up	and	down	or	across	
the	slopes.	Figure	10D–10	shows	the	orientation	of	
the lifts of a compacted liner constructed using this 
method, as contrasted to the stair step method, which 
is	covered	next.	Figure	10D–11	shows	two	sites	where	
the	bathtub	method	of	construction	is	being	used.	
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This construction method has the following advan-
tages over the stair-step method:

•	 The layers of compacted clay are oriented 
perpendicular to flow through the liner in this 
method.	If	the	lifts	making	up	the	liner	are	not	
bonded	well,	the	effect	on	seepage	is	minor,	
compared to the stair-step method.

•	 This	method	lends	itself	to	constructing	thinner	
lifts, which is more economical. 

The	bathtub	construction	method	has	the	following	
disadvantages compared to the stair-step method:

•	 Side	slopes	must	be	considerably	flatter	than	
for the stair-step method, creating a pond with 
a larger surface area. A pond with a larger sur-
face area has to store more precipitation falling 
on	it,	which	could	be	considered	an	extra	cost	
of the method.

•	 To	permit	equipment	traversing	up	and	down	
the	slopes,	slopes	must	be	an	absolute	mini-
mum	of	3H:1V.	Shearing	of	the	soil	by	the	equip-
ment on steeper slopes is a concern. To prevent 
shearing of the compacted soil, the slopes of 
many compacted liners in ponds constructed 
using	this	method	use	4H:1V	slopes	so	that	
equipment will exert more normal pressure on 
the slope than downslope pressure.

Stair-step construction
The stair-step method of construction is illustrated in 
figure	10D–10.	Construction	of	the	liner	consists	of	
compacting lifts of soil around the perimeter of the 
liner	in	a	stair-step	fashion,	finishing	the	job	by	shaving	
off	some	of	the	side	liner	and	placing	it	in	the	bottom	
of the pond. This method of construction is required if 
the	side	slopes	of	the	pond	are	any	steeper	than	about	
3H:1V.	Advantages	of	this	method	of	construction	are:

•	 A	thicker	blanket,	measured	normal	to	the	
slope,	will	result	compared	to	the	bathtub	
method	of	construction	(fig.	10D–10).	This	is	a	
positive factor in seepage reduction.

•	 It	allows	steeper	side	slopes,	and	thus	the	
surface area of the pond exposed to rainwater 
accumulation	is	smaller	than	a	bathtub	con-
struction would permit.

•	 The	thicker	blanket	reduces	the	impact	of	
shrinkage	cracks,	erosive	forces,	and	potential	
mechanical damage to the liner.

Bathtub construction

Seepage
perpendicular

Stair-step construction

Figure 10D–10 Methods of liner construction (after 
Boutwell 1990)

Figure 10D–11	 Bathtub	construction	of	clay	liner	(photo 
courtesy of NRCS Virginia (top) and 
NRCS Nebraska (bottom))
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•	 Ponds	constructed	with	this	method	are	deeper	
for a given volume of waste than ponds con-
structed	with	the	bathtub	method,	which	favors	
anaerobic	processes	in	the	pond.

Disadvantages	of	the	method	are:

•	 This	method	may	be	more	expensive	than	the	
bathtub	method	because	the	liner	on	the	sides	
of	the	pond	are	thicker.

•	 Flow	is	parallel	to	the	orientation	of	the	layers	
forming the compacted liner on the pond sides. 
If	care	is	not	taken	to	obtain	good	bonding	
between	lifts,	seepage	through	the	interface	
between	lifts	could	be	higher	than	expected.	

•	 Contractors	may	be	less	familiar	with	this	
method of operation of equipment.

In the stair-step method of construction, the pond is 
first	excavated.	Borrow	soil	is	then	imported	with	
a	truck	or	scraper	and	spread	in	thin	lifts	(8	to	9	in	
thick)	prior	to	compaction.	Figure	10D–12a	shows	the	
first	layer	being	constructed	on	the	sides	of	the	pond.	
This	pond	used	a	bentonite	application.	Each	lift	of	
soil	is	compacted	with	a	sheepsfoot	roller	to	obtain	
the	desired	dry	density	at	the	specified	water	con-
tent	(fig.	10D–12b).	The	interior	liner	is	constructed	
by	bringing	up	lifts	the	full	depth	of	the	pond.	Photo	
10D–12c	provides	an	overview	of	the	stair-step	process	
of constructing a clay liner in an animal waste stor-
age pond. After the sides are constructed, some of the 
liner is shaved off and used to construct a liner in the 
bottom	of	the	pond	(fig.	10D–12c).	

Soil type

Soils	in	groups	III	and	IV	are	the	most	desirable	for	
constructing	a	clay	liner	(table	10D–3).	Some	soils	in	
group	II	may	also	be	good	materials	for	a	clay	liner,	
but	definitely	require	laboratory	testing	to	document	
their	permeability	characteristics.	Soils	in	group	I	
always	require	bentonite	to	form	a	liner	with	accept-
ably	low	permeability.	Some	soils	in	group	II	may	also	
require	bentonite	to	be	an	acceptable	material	for	a	
liner. Some soils in groups III and IV require a soil dis-
persant	to	create	an	acceptably	low	permeability.	

Classification
The most ideal soils for compacted liners are those in 
group III. The soils have adequate plasticity to provide 
a	low	permeability,	but	the	permeability	is	not	exces-

(a)

(b)

(c)

Figure 10D–12 Stair-step method (Photo credit John 
Zaginaylo, PA, NRCS) 
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sively	high	to	cause	poor	workability.	Group	IV	soils	
can	be	useful	for	a	clay	liner,	but	their	higher	plasticity	
index	(PI	greater	than	30)	means	they	are	more	sus-
ceptible	to	desiccation.	If	clay	liners	are	exposed	to	
hot	dry	periods	before	the	pond	can	be	filled,	desicca-
tion	and	cracking	of	the	liner	can	result	in	an	increase	
in	permeability	of	the	liner.	A	protective	layer	of	lower	
PI	soils	is	often	specified	for	protection	of	higher	PI	
clay	liners	to	prevent	this	problem	from	developing.	

Highly	plastic	clays	like	those	in	group	IV	are	also	
difficult	to	compact	properly.	Special	effort	should	be	
directed	to	processing	the	fill	and	degrading	any	clods	
in	high	plasticity	clays	to	prevent	this	problem.

Size of clods
The size and dry strength of clay clods in soil prior to 
compaction	have	a	significant	effect	on	the	final	qual-
ity of a clay liner. Soil containing hard clayey clods is 
difficult	to	break	down	and	moisten	thoroughly.	Add-
ing	water	to	the	soil	is	difficult	because	water	pen-
etrates the clods slowly. High speed rotary pulverizers 
are sometimes needed if conditions are especially 
unfavorable.	If	soils	containing	large	clay	clods	are	
not	treated	properly,	the	resultant	permeability	will	
be	much	higher	than	might	otherwise	be	true.	Figure	
10D–13	shows	the	structure	that	results	from	com-
pacting soils containing clods that are not adequately 
broken	down.

Natural water content of borrow

The water content of soils used to construct a clay 
liner	is	the	most	important	factor	in	obtaining	a	low	
permeability	liner	for	a	given	soil.	If	soils	are	too	dry,	
they	cannot	effectively	be	compacted	to	a	condition	
where	their	structure	is	acceptable	and	their	perme-
ability	may	be	higher	than	desirable.	Compacting	a	soil	
at the proper water content creates a structure that 
is	most	favorable	to	a	low	permeability.	Adding	water	
to compacted clay liners is an additional expense that 
must	be	considered.	A	good	rule	of	thumb	is	that	it	re-
quires	about	3.2	gallons	of	water	to	increase	the	water	
content	of	a	cubic	yard	of	compacted	soil	by	1	percent.	

Dry conditions in the borrow
If	soils	in	the	borrow	area	are	dry,	several	problems	
may	need	to	be	addressed.	If	the	soils	are	clays	with	
relatively	high	plasticity	(PI	values	greater	than	about	
20),	they	are	likely	to	be	very	cloddy	when	excavated.	

Figure 10D–13 Macrostructure in highly plastic clays 
with poor construction techniques (from 
Hermann	and	Elsbury	1987)

Key
Remolded clod

Partially remolded clod

Totally remolded clod

Intermediate situation

Macropermeability

Micropermeability

Macrovoid

Water is slow to penetrate the clods and compaction 
is	less	likely	to	degrade	clods	if	enough	time	has	not	
elapsed	between	adding	the	water	and	compaction.	
More	descriptions	follow	in	subsequent	sections,	and	
figure	10D–13	illustrates	how	clods	left	in	the	compact-
ed	fill	will	likely	cause	the	soil	to	have	a	higher	than	
expected	permeability.

If	the	water	content	of	borrow	soils	is	more	than	3	or	
4	percent	drier	than	required	for	specified	compaction	
conditions,	consideration	should	be	given	to	wetting	
the	soils	in	the	borrow	prior	to	construction.	Adding	
large	amounts	of	water	during	processing	on	the	fill	is	
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difficult	and	inefficient.	Sprinklers	can	be	set	up	in	the	
borrow	some	time	before	construction	is	planned	and	
then	time	will	allow	water	to	soak	into	the	soils	more	
thoroughly.

Wet conditions in the borrow
If	the	natural	water	content	of	the	borrow	soil	is	sig-
nificantly	higher	than	optimum	water	content,	achiev-
ing	the	required	degree	of	compaction	may	be	difficult.	
A	good	rule	of	thumb	is	that	a	soil	will	be	difficult	to	
compact	if	its	natural	water	content	exceeds	about	90	
percent of the theoretical saturated water content at 
the	dry	density	to	be	attained.	The	following	proce-
dure	can	help	to	determine	if	the	soils	in	the	borrow	
are too wet for effectively compacting them.

Step 1 Measure the natural water content of the 
soil	to	be	used	as	a	borrow	source	for	the	clay	
liner	being	compacted.

Step 2 Compute the highest dry density to which 
the	soil	can	be	compacted	at	this	water	content	
using the following equation, which assumes that 
the	highest	degree	of	saturation	achievable	is	90	
percent:
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	 =	 specific	gravity	of	the	soil	solids	(dimen-
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Specific	gravity	values	are	obtained	by	ASTM	Stan-
dard	Test	Method	D854.	An	average	value	for	spe-
cific	gravity	is	often	assumed	to	be	2.68.	However,	
soils with unusual mineralogy may have values 
significantly	different.	Soils	with	volcanic	ash	may	
have	specific	gravity	values	as	low	as	2.3,	and	soils	
with hematite in them may have values as high as 
3.3,	based	on	NRCS	laboratory	results.

Step 3 Perform a Standard Proctor (ASTM 
D698)	compaction	test	on	the	same	soil	and	de-
termine the maximum dry density value. Compute 
the	achievable	degree	of	compaction	by	dividing	
the	computed	value	of	achievable	dry	density	by	
the maximum Standard Proctor dry density. 

Step 4 If	the	computed	achievable	degree	of	
compaction is less than 95 percent, then drying 
of	the	sample	will	probably	be	required.	In	rare	
cases, compaction to a lower degree, such as 90 
percent of Standard Proctor, at higher water con-
tents	will	achieve	an	acceptably	low	permeability.	
Laboratory	tests	should	be	performed	to	evaluate	
whether a lower degree of compaction will result 
in	an	acceptable	permeability	value.	

Note:	The	experience	of	NRCS	engineers	is	that	
when the natural water content of a soil is more 
than	4	percent	above	optimum	water	content,	it	
is	not	possible	to	achieve	95	percent	compaction.	
Computations	should	always	be	performed,	as	
this	rule	of	thumb	sometimes	has	exceptions.	In	
most	cases,	drying	clay	soils	by	only	disking	is	
somewhat	ineffective,	and	it	is	difficult	to	reduce	
their	water	content	by	more	than	2	or	3	percent	
with	normal	effort.	It	may	be	more	practical	to	
delay construction to a drier part of the year when 
the	borrow	source	is	at	a	lower	water	content.	In	
some	cases,	the	borrow	area	can	be	drained	sev-
eral	months	before	construction.	This	would	allow	
gravity drainage to decrease the water content to 
an	acceptable	level.

Step 5 Another	way	of	examining	this	problem	
is	to	assume	that	soils	must	be	compacted	to	95	
percent	of	their	Standard	Proctor	(ASTM	D698)	
dry density and then compute the highest water 
content	at	which	this	density	is	achievable.	Com-
monly,	soils	are	difficult	to	compact	to	a	point	
where they are more than 90 percent saturated. 
The following equation is used to determine the 
highest	feasible	placement	water	content	at	which	
the	dry	density	goal	is	achievable:

Highest placement 
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Example 10D–4—Compute the achievable dry 
density of a potential borrow source
Given: 
A	borrow	source	is	located	and	found	to	be	in	a	desir-
able	group	III	type	soil.	The	soil	has	65	percent	finer	
than	the	No.	200	sieve	and	a	PI	of	18.	The	soil	was	sam-
pled and placed in a water tight container and shipped 
to	a	soils	laboratory.	The	natural	water	content	of	the	
soil	was	measured	to	be	21.8	percent.	The	lab	also	
performed	a	specific	gravity	(Gs) test on the soil, and 
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measured a value of 2.72. A Standard Proctor Test was 
performed on the sample and values for maximum dry 
density	of	108.5	pounds	per	cubic	foot	and	an	optimum	
water content of 17.0 percent were measured. 

Solution:  
The maximum degree of compaction of this soil at the 
measured	water	content.	If	the	soil	is	too	wet	to	be	
compacted to 95 percent of maximum standard Proc-
tor	dry	density,	how	much	will	it	have	to	be	dried	to	
achieve compaction to 95 percent of maximum den-
sity?
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Next,	compute	the	achievable	degree	of	compaction	
by	dividing	the	achievable	dry	density	by	the	maxi-
mum Standard Proctor dry density, expressed as a 
percentage.	The	achievable	degree	of	compaction	is	
then	equal	to	102.3	divided	by	108.5×100=94.3	percent.

Now,	determine	how	wet	the	sample	could	be	and	
still	achieve	95	percent	compaction.	Ninety-five	per-
cent of the maximum Standard Proctor dry density is 
0.95×108.5=103.1	pounds	per	cubic	foot.	Substitute	
this value into the equation given:
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This	computation	confirms	the	rule	of	thumb	given	
that	it	is	difficult	to	achieve	95	percent	degree	of	com-
paction	if	the	natural	water	content	is	greater	than	4	
percent	above	optimum.	The	stated	value	for	optimum	
water	content	is	17.0	percent,	so	the	rule	of	thumb	
says that if the natural water content exceeds 21.0 
percent, achieving 95 percent degree of compaction 
will	be	difficult.	

Methods of excavating and processing 
clay for liners

Clods in borrow soil
If	borrow	soils	are	plastic	clays	at	a	low	water	content,	
the	soil	will	probably	have	large,	durable	clods.	Disk-
ing	may	be	effective	for	some	soils	at	the	proper	water	
content,	but	pulverizer	machines	may	also	be	required.	
To	attain	the	highest	quality	liner,	the	transported	fill	
should	be	processed	by	adding	water	and	then	turned	
with	either	a	disk	or	a	high-speed	rotary	mixer	before	
using	a	tamping	roller.	Equipment	requirements	de-
pend on the strength and size of clods and the water 
content of the soil.

Placement of lifts
Individual lifts of soil usually consist of an equipment 
width	(often	about	8	to	10	feet	wide)	layer	of	soil	
about	6	inches	thick,	after	compaction.	These	lifts	
should	be	staggered	to	prevent	preferential	flow	along	
the	inter-lift	boundaries.	Figure	10D–14(a)	shows	the	
preferred way of offsetting the lifts. Figure  
10D–14(b)	shows	a	method	that	should	be	avoided.	
Bonding	between	the	6-inch	lifts	is	also	important	so	
that	if	water	does	find	its	way	down	the	boundary	be-
tween two lanes of compacted soil that it cannot flow 
laterally	and	find	the	offset	boundary.

Macrostructure in plastic clay soils

Clods can create a macrostructure in a soil that re-
sults	in	higher	than	expected	permeability	because	of	
preferential	flow	along	the	interfaces	between	clods.	

(b) Lanes for lift placement that are not staggered 
allows preferential flow at sides of lifts.

(a) Lanes for lift placement should be staggered to
prevent preferential flow at sides of lifts. Bonding
of lifts is also important to prevent flow along
poorly bonded lifts.

Figure 10D–14 Construction methods to limit interlift 
preferential flow paths
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Figure	10D–13	illustrates	the	structure	that	can	result	
from inadequate wetting and processing of plastic clay. 
The	permeability	of	intact	clay	particles	may	be	quite	
low,	but	the	overall	permeability	of	the	mass	is	high	
because	of	flow	between	the	intact	particles.

Dry density and optimum water content

Compaction	specifications	for	most	earthfill	projects	
normally require a minimum dry density (usually ref-
erenced	to	a	specified	compaction	test	procedure)	and	
an	accompanying	range	of	acceptable	water	contents	
(referenced to the same compaction test procedure). 
This	method	of	fill	specification	is	usually	based	on	en-
gineering	property	tests	such	as	shear	strength,	bear-
ing	capacity,	and	permeability.	When	permeability	is	
the primary engineering property of interest, as would 
be	the	case	for	a	compacted	clay	liner,	an	alternative	
type	of	compaction	specification	should	be	consid-
ered.	The	reason	for	this	is	a	given	permeability	value	
can	be	attained	for	many	combinations	of	compacted	
density	and	water	contents	(Daniels	and	Benson	1990).	
Figure	10D–15	illustrates	a	window	of	compacted	dry	
density	and	water	content	in	which	a	given	permeabil-
ity	could	be	obtained	for	an	example	soil.	The	prin-
ciples	involved	can	be	illustrated	as	follows.

Figure 10D–15	 Range	at	acceptable	moisture/density	for	
a typical clay liner
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Assume	that	a	given	soil	is	being	used	to	construct	a	
clay liner for an animal waste impoundment. A moder-
ately plastic silty clay classifying as CL in the USCS is 
used.	In	case	1,	the	soil	being	obtained	from	a	nearby	
borrow	area	has	a	relatively	high	natural	water	con-
tent. The contractor elects to use lighter construction 
equipment that applies a relatively low energy in com-
pacting the soil. The result is the soil is compacted to 
a condition where the compacted density is relatively 
low and the placement water content is relatively high. 
This	is	labeled	as	point	1	in	the	figure	10D–15.	In	case	
2,	the	same	soil	is	being	used,	but	the	site	is	being	con-
structed in a drier time of year. The contractor elects 
to use a larger sheepsfoot roller and apply more pass-
es of the equipment to achieve the desired product. 
This	time	the	same	soil	is	compacted	to	a	significantly	
higher	density	at	a	significantly	lower	water	content.	
This	is	labeled	point	2	in	the	figure	10D–15.

Laboratory	tests	can	be	used	to	establish	the	boundary	
conditions	and	arrive	at	a	window	of	acceptable	densi-
ties	and	water	contents	for	a	clay	liner.	Figure	10D–16	
shows	how	a	different	structure	results	between	soils	
compacted wet of optimum and those compacted dry 
of optimum water content. It also illustrates that soils 
compacted with a higher compactive effort or energy 
have a different structure than those compacted with 
low energy.

Figure 10D–16	 Effect	of	water	content	and	compactive	
effort on remolding of soil structure in 
clays	(from	Lambe	1958)
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Mitchell	(1965)	was	instrumental	in	explaining	how	
the	permeability	of	clay	soils	is	affected	by	the	con-
ditions under which they were compacted. Figure 
10D–17	illustrates	results	of	one	series	of	experiments	
summarized in the study. Two samples of a soil were 
compacted using different energy at different water 
contents	and	their	permeability	was	measured.	Soil	
C	was	compacted	using	higher	energy,	like	that	used	
when a heavy sheepsfoot roller passed over each 
compacted lift multiple times. Soil B was compacted 
using a lower energy, equating to a smaller roller with 
a	smaller	number	of	passes	used	in	the	compaction	
process.

The	curves	show	the	relationship	between	the	per-
meability	of	the	compacted	soil	and	the	compaction	
water content, for the two energies used. The follow-
ing general principles are seen:

•	 The	permeability	of	the	low	energy	soil	(curve	
B) is high unless the compaction water con-
tent	is	significantly	wet	of	optimum.	Very	high	
permeability	results	for	compaction	dry	of	
optimum.

•	 The	permeability	of	the	higher	energy	soil	
(curve C) is relatively high for water contents 
less than optimum.

Lambe	(1958)	explains	how	the	energy	used	and	the	
water content of the soil at the time of compaction 
affect	the	permeability	of	the	soil	by	creating	structure	
in	the	soil.	Figure	10D–16	summarizes	his	explanation	

of how different soil structures results from these two 
factors. Soils compacted with higher energy (heavier 
equipment and numerous passes of the equipment) 
at a higher water content have a dispersed structure. 
This structure creates very small plate-shaped voids 
that are resistant to water flow. Soils that are com-
pacted with lower energy and/or lower water contents 
have a flocculated structure. This structure involves 
larger voids that are more conducive to water flow.

Percent saturation importance
Benson and Boutwell (2000) studied the correlation 
between	field	measured	permeability	values	on	com-
pacted	liners	with	laboratory	measured	values.	The	
study found that when soils were compacted at drier 
water	contents,	even	if	a	high	density	were	obtained,	
that	correlation	between	field	and	lab	permeability	test	
values was poor. The study found good correlation 
when soils were compacted at relatively higher water 
contents.	Clods	in	clay	soils	are	probably	not	broken	
down as well at lower compaction water contents 
which	explains	the	higher	permeability	in	the	field.	
In	lab	tests,	breaking	down	clods	and	obtaining	test	
specimens without a structure is easier than done with 
field	compaction	procedures.

The	conclusions	of	Benson	and	Boutwell’s	research	
were	that	if	a	designer	is	going	to	rely	on	laboratory	
permeability	tests	to	predict	the	permeability	of	a	com-
pacted	clay	liner,	the	following	rules	of	thumb	apply.

•	 Soils	should	generally	be	compacted	wet	of	the	
line of optimums. The line of optimums is illus-
trated	in	figure	10D–15.	It	is	the	locus	of	opti-
mum water content values for a given soil for a 
range of compactive energy. A soil compacted 
with	a	low	energy	(like	that	resulting	from	a	
small	sheepsfoot	roller),	curve	A	in	figure	 
10D–15,	will	have	a	relatively	low	maximum	
density and high maximum water content. A 
soil	compacted	with	a	high	energy	(like	that	
resulting from using a large heavy tamping 
roller),	curve	C	in	figure	10D–15,	will	have	a	
high value for maximum density and a low 
value of optimum water content. The line of 
optimums is the locus of points connecting the 
values	of	optimum	water	content.	Remember	
that optimum water content depends on the 
energy used and that Standard Proctor (ASTM 
D698)	is	only	one	standard	type	of	compaction	

Figure 10D–17 Plot showing effect of molding water 
content	on	permeability	(Mitchell	1965)	
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test.	ASTM	D1557,	the	modified	energy	test	is	
also used for design of some clay liners.

•	 Eighty	percent	of	field	tests	of	dry	density	and	
water content should plot to the right of the 
line	of	optimums	if	the	field	permeability	is	
expected	to	reflect	the	same	values	obtained	in	
laboratory	testing.

•	 The	average	water	content	of	all	quality	control	
tests	should	be	from	2	to	4	percent	wetter	than	
the	line	of	optimums	as	defined.	

Energy level of compaction

The relationship of maximum dry density and opti-
mum water content varies with the compactive energy 
used to compact a soil. Higher compactive energy 
results in higher values of maximum dry unit weight 
and lower values of optimum water content. Lower 
compactive energy results in lower values of maxi-
mum dry unit weight and higher values of optimum 
water content. Because optimum water content varies 
with the energy used in compaction, its nomenclature 
can	be	misleading.	The	optimum	water	content	of	a	
soil varies with the particular energy used in the test to 
measure it. 

Compactive energy is a function of the weight of the 
roller	used,	thickness	of	the	lift,	and	number	of	passes	
of	the	roller	over	each	lift.	Rollers	should	be	heavy	
enough	to	cause	the	projections	(teeth	or	pads)	on	the	
roller to penetrate or almost penetrate the compacted 
lift.	Enough	passes	must	be	used	to	attain	coverage	
and	break	up	any	clods.	Additional	passes	do	not	com-
pensate for rollers that are too light.

Roller	size	is	often	specified	in	terms	of	contact	pres-
sure	exerted	by	the	feet	on	sheepsfoot	or	tamping	
rollers. Light rollers have contact pressures less than 
200 pounds per square inch, while heavy rollers have 
contact	pressures	greater	than	400	pounds	per	square	
inch.

Limited	data	are	available	for	various	sizes	of	equip-
ment	to	correlate	the	number	of	passes	required	to	
attain different degrees of compaction. Typically, from 
4	to	8	passes	of	a	tamping	roller	with	feet	contact	
pressures	of	200	to	400	pounds	per	square	inch	are	
required to attain degrees of compaction of from 90 to 
100 percent of maximum Standard Proctor dry density. 

However, this may vary widely with the soil type and 
weight	of	roller	used.	Specific	site	testing	should	be	
used	when	possible.

Equipment considerations

Size and shape of teeth on roller
Older	style	sheepsfoot-type	projections	on	rollers	are	
best	suited	for	compacting	clay	soils	to	achieve	the	
lowest	possible	permeability.	They	are	better	suited	
than the modern style rollers called tamping rollers 
that	have	more	square,	larger	area	projections.	The	
longer teeth on the older style sheepsfoot rollers are 
better	at	remolding	plastic	clay	soils	that	are	wet	of	
optimum	water	content,	and	they	are	better	at	de-
grading	clods	in	the	soils	(fig.	10D–18).	The	modern	
tamping-type rollers are effective in compacting soils 
at	a	drier	water	content	when	high	bearing	capacity	
is	needed,	like	soils	being	compacted	for	highway	
subgrades	(fig.	10D–19).	The	older	style	of	sheepsfoot	
roller	compactors	are	better	suited	for	compaction	to	
achieve	low	permeability.	

Total weight of roller
To	attain	penetration	of	the	specified	loose	lift,	the	
roller	weight	must	be	appropriate	to	the	specified	
thickness	and	the	shape	of	the	roller	projections.	Many	
modern rollers are too heavy to compact soils that are 
more than 1 or 2 percent wet of optimum water con-
tent.	When	the	specified	compaction	water	content	is	2	
percent or more wet of optimum water content, lighter 
rollers	are	essential.	Permeability	of	clays	is	minimized	
by	compaction	at	water	contents	wet	of	optimum.

Speed of operation
Heavy rollers operated at excessive speed can shear 
the	soil	lifts	being	compacted,	which	may	result	in	
higher	permeability.	Close	inspection	of	construction	
operations	should	indicate	if	this	problem	is	occurring,	
and	adjustments	to	equipment	or	the	mode	of	opera-
tion	should	then	be	made.

Vibratory versus nonvibratory sheepsfoot and 
tamping rollers
Some sheepsfoot and tamping rollers have an added 
feature,	a	vibratory	action.	This	feature	can	usually	be	
activated	or	deactivated	while	soils	are	being	compact-
ed.	Vibratory	energy	adds	little	to	the	effectiveness	
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of	these	rollers	when	the	soils	being	compacted	are	
clays.	At	the	same	time,	the	vibration	of	the	equipment	
is not usually detrimental. One condition in which the 
vibratory	energy	of	this	type	of	equipment	might	be	
detrimental	is	when	a	clay	liner	is	being	constructed	
on	a	subgrade	of	low	plasticity	silts	or	sands	that	are	
saturated.	The	vibration	of	the	equipment	often	causes	
these	types	of	foundation	soils	to	become	dilatant	as	
they densify, and the water expelled in this process 
can	create	a	trafficability	problem.	For	this	reason,	
when	subgrade	soils	are	saturated	low	plasticity	silts	
and	sands,	the	vibratory	action	of	the	compaction	
equipment	should	be	disabled.

Figure 10D–19 Modern type of tamping roller less well 
suited for compacting soils for clay liner

Figure 10D–18	 Longer	style	of	teeth	preferable	for	com-
pacting soils for clay liner

Figure 10D–20 Smooth-wheeled steel roller compactor

Vibratory smooth-wheeled rollers
Vibratory	smooth-wheeled	rollers	are	well	suited	to	
compacting	bentonite-treated	liners.	They	should	
not	be	used	for	compacting	clay	liners,	however.	The	
smooth	surface	of	the	roller	results	in	poor	bond-
ing	between	lifts	and	can	cause	problems	like	those	
shown	in	figure	10D–14.	The	load	distribution	of	the	
rollers	also	causes	the	top	of	a	lift	to	be	compacted	
well	but	the	bottom	of	the	lift	not	as	well,	when	fine-
grained	soils	are	being	compacted.	A	vibratory	smooth	
wheeled	roller	is	shown	in	figure	10D–20.
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Freeze-thaw and desiccation

Freeze-thaw
Compacted	clay	liners	may	become	damaged	when	the	
liner	is	exposed	during	freezing	weather.	Articles	by	
Kim	and	Daniel	(1992)	and	Benson	and	Othman	(1993)	
describe	the	effects	of	freezing	on	clay	liners	and	how	
the	damage	resulting	from	freezing	may	be	permanent.	
Laboratory	tests	show	that	permeability	rates	may	
increase	by	2	to	3	orders	of	magnitude	(100–1,000	
times).	Freeze-thaw	damage	is	more	likely	to	affect	the	
side	slopes	of	a	clay-lined	pond	than	it	will	the	bottom	
of	the	pond	after	it	is	filled.	If	freeze-thaw	damage	is	
regarded	as	likely	to	increase	the	permeability	of	the	
soils	on	the	side	slopes	of	the	pond,	a	thicker	liner	
or	protective	cap	of	cover	soil	should	be	considered.	
The extra cost of freeze-thaw protection may cause a 
designer to consider a synthetic liner alternative for 
reasons	of	economy	and	confidence	in	the	low	perme-
ability	of	the	synthetic	liner.	For	instance,	Minnesota	
designs	often	include	the	use	of	GCL	liners	for	this	
reason.

Desiccation
Compacted	clay	liners	may	also	be	damaged	when	
the liner is exposed during hot, dry weather after 
construction	and	before	the	pond	is	filled.	Desiccation	
may also occur during periods the pond is emptied. Ar-
ticles	by	Daniel	and	Wu	(1993)	and	Kleppe	and	Olson	
(1985)	describe	factors	that	affect	desiccation.	Using	
the	sandiest	soil	available	that	will	be	adequately	im-
permeable	is	helpful.	Compacting	the	soil	as	dense	and	
dry as practical while still achieving the design perme-
ability	goal	is	also	helpful.	Protective	layers	must	be	at	
least	12	inches	thick	to	be	effective,	and	even	thicker	
layers	may	be	needed	for	more	plastic	clay	liners,	
those	with	PI	values	of	30	or	higher.

Design and construction of  
bentonite amended liners

When soils at grade of an excavated pond are low plas-
ticity	sands	and	silts	in	groups	I	or	II	of	table	10D–3,	an	
unlined	pond	will	result	in	unacceptably	high	seepage	
losses. Several design options are normally considered 
for this situation. The options are listed as follows in 
order of increasing cost:

•	 Clay	soils	suitable	for	a	clay	liner	are	located	in	
a	nearby	borrow	area	and	imported	to	the	site	
to	construct	a	compacted	clay	liner.	CPS	521D	
applies to this practice.

•	 Soils	from	the	excavation	and	at	the	excavated	
subgrade	are	treated	with	bentonite	to	create	a	
compacted	liner	with	the	required	permeability	
and	thickness.	CPS	521C	applies	to	this	prac-
tice.

•	 The	pond	may	be	lined	with	geosynthetic,	a	
GCL,	or	lined	with	concrete.	An	aboveground	
storage	tank	is	also	an	option.

Bentonite type and quality

Several	types	of	bentonite	are	mined	and	marketed	
for	use	in	treating	soils	to	produce	a	low	permeability	
liner.	The	most	effective	type	of	bentonite	(less	vol-
ume	required	per	cubic	foot	of	treated	soil)	is	finely	
ground	sodium	bentonite	that	is	mined	in	the	area	of	
northeast Wyoming, southeast Montana, and western 
South	Dakota.	This	sodium	bentonite	is	derived	from	
weathered	volcanic	ash.	Sodium	bentonite	is	a	smec-
tite clay composed primarily of the mineral montmoril-
lonite	(Bentofix	2007).	It	has	the	ability	to	swell	up	to	
10 to 15 times its dry natural volume when exposed 
to	water.	Other	types	of	bentonite,	usually	calcium	
bentonite	are	also	mined	and	marketed	for	treating	
soils.	These	types	of	bentonites	are	less	active	(less	
free	swell	potential)	and	more	volume	of	bentonite	per	
treated	cubic	yard	of	soil	will	be	required	to	produce	a	
target	permeability	than	would	be	required	if	sodium	
bentonite	were	used.

Two	methods	of	evaluating	a	bentonite	source	being	
considered for use as an additive for a liner has high 
swell properties exist. They are:

•	 Determine	the	level	of	activity	based	on	its	
Atterberg	limit	values	as	determined	in	a	soil	
testing	laboratory.	High-quality	sodium	benton-
ite	has	LL	values	greater	than	600	and	PI	values	
greater than 550. 

•	 High-quality	sodium	bentonite	has	a	free	swell	
value	of	22	milliliter	or	higher,	based	on	experi-
ence	of	NRCS	engineers	and	generally	accepted	
guidance. An ASTM Standard test method to 
evaluate	the	free	swell	potential	of	bentonite	
is	used	to	verify	the	quality	of	bentonite	used	
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in	GCL	liners	and	is	also	suitable	for	evaluat-
ing	bentonite	proposed	for	a	liner	being	con-
structed using CPS 521C. The ASTM method is 
D5890.	A	summary	of	the	method	follows.

— Prepare a sample for testing that consists 
of material from the total sample that is 
smaller	than	a	No.	100	sieve.

—	 Partially	fill	a	100-milliliter	graduated	cylin-
der with 90 milliliters of distilled water.

—	 Add	2	grams	of	bentonite	in	small	incre-
ments	to	the	cylinder.	The	bentonite	will	
sink	to	the	bottom	of	the	cylinder	and	
swell as it hydrates. Wash the sides of the 
cylinder	and	fill	to	the	100-milliliter	level.

—	 After	2	hours,	inspect	the	hydrating	ben-
tonite column for trapped air or water 
separation in the column. If present, gently 
tip	the	cylinder	at	a	45-degree	angle	and	
roll	slowly	to	homogenize	the	settled	ben-
tonite mass.

—	 After	16	hours	from	the	time	the	last	of	
sample was added to the cylinder, record 
the volume level in milliliters at the top of 
the	settled	bentonite.	Record	the	volume	
of free swell, for example, 22 milliliters 
free	swell	in	24	hours.

Figure	10D–21	shows	an	excellent	quality	bentonite	
reaction	to	the	test.	It	has	a	free	swell	of	about	27	mil-
liliters.

Bentonite is furnished in a range of particle sizes for 
different	uses.	Fineness	provided	by	the	bentonite	
industry	ranges	from	very	finely	ground,	with	most	
particles	finer	than	a	No.	200	sieve,	to	a	granular	form,	
with	particles	about	the	size	of	a	No.	40	sieve.	Labora-
tory	permeability	tests	have	shown	that	even	though	
the	same	bentonite	is	applied	at	the	same	volumetric	
rate to a sample, a dramatic difference in the resulting 
permeability	can	occur	between	a	fine	and	a	coarse	
bentonite.	It	is	important	to	use	in	construction	the	
same	quality	and	fineness	as	was	used	by	the	soils	
laboratory	for	the	permeability	tests	to	arrive	at	rec-
ommendations. Fineness for use in treating liners 
for	waste	impoundment	can	also	be	specified	by	an	
acceptable	bentonite	by	supplier	and	designation,	or	
equivalent.	An	example	specification	is	Wyo	Ben	type	
Envirogel	200,	CETCO	type	BS–1,	or	equivalent.

Design details for bentonite liner

The criteria given in CPS 521C, Pond Sealing or Lining, 
Bentonite Treatment, provide minimum required liner 
thicknesses	for	various	depth	of	liquids.	

CPS 521C provides guidance on rates of application 
of	bentonite	for	preliminary	planning	purposes	or	
where	the	size	and	scope	of	the	project	does	not	war-
rant	obtaining	samples	and	having	laboratory	tests	
performed. These preliminary recommended rates of 
application	are	based	on	using	high-quality	sodium	
bentonite	that	is	finely	ground.	The	CPS	521C	includes	
a	table	that	shows	a	range	of	recommended	applica-
tion	rates	which	vary	with	the	type	of	soil	being	treat-
ed. Higher rates of application are needed for coarse, 
clean	sands	and	lower	rates	for	silts.	The	table	shows	
a recommended application rate expressed in pounds 
of	bentonite	per	square	foot	per	inch	of	liner	to	be	
built.	For	example,	a	typical	rate	of	application	for	a	
relatively	clean	sand	would	be	about	0.625	pounds	per	
square	foot	per	inch	of	compacted	bentonite-treated	
liner.	The	most	up-to-date	CPS	521C	should	always	be	
consulted for recommended rates, in case they have 
changed since this document was written.

For planning purposes, using these recommended 
rates,	the	amount	of	bentonite	needed	for	a	job	can	
be	estimated.	For	example,	assume	that	a	pond	is	to	
be	constructed	with	an	area	of	the	sides	and	bottom	
totaling one acre. Assume that considering the planned 
depth	of	water	in	the	pond,	a	design	has	been	formu-

Figure 10D–21	 Free	swell	test	for	bentonite	ASTM	D5890
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lated	that	calls	for	a	1-foot-thick	bentonite-treated	
liner	and	that	an	application	rate	of	0.625	pounds	per	
square foot per inch is needed. The total amount of 
bentonite	required	per	square	foot	will	be	

 0 625 12 7 52. .	lb/ft  in/ft  lb× =

of	bentonite	per	square	foot.	For	an	acre	of	pond	area,	
the	total	amount	needed	will	be	

 

7 5 43 560 326 700

163

2. , ,	lb/ft  ft /acre  lb

 tons

2× =
=

The	cost	of	bentonite	is	affected	strongly	by	freight,	
and the further a site is from the area of the United 
States	where	bentonite	is	produced,	the	more	costly	
it	will	be.	Better	unit	prices	are	available	for	larger	
quantities.

Remember	that	the	preliminary	rates	of	application	
provided	in	CPS	521C	assume	that	finely	ground	high-
swell	sodium	bentonite	is	used.	If	plans	anticipate	that	
a	lower	quality	bentonite	with	a	free	swell	less	than	
about	22	milliliters	or	a	coarsely	ground	bentonite	
may	be	used,	laboratory	testing	is	required	to	estab-
lish	a	rate	of	application	that	will	create	a	suitably	
low	permeability.	Design	using	the	specific	discharge	
approach	will	establish	what	the	target	permeability	
value	should	be.

The recommended procedure to arrive at a design for 
a	bentonite-treated	liner	then	is	as	follows:

Step 1	 Obtain	a	sample	of	the	soil	to	which	the	
bentonite	is	to	be	added.	Have	the	sample	tested	
in	a	soils	laboratory	to	determine	its	basic	index	
properties,	including	percent	fines	and	plasticity.

Step 2	 Have	a	standard	Proctor	(ASTM	D698)	
test performed to determine the maximum dry 
density and optimum water content.

Step 3 From the preliminary design of the site, 
determine the depth of water in the structure. Use 
CPS	521C	to	determine	the	minimum	thickness	of	
liner required.

Step 4 Using given or assumed values for al-
lowable	specific	discharge,	compute	the	required	
permeability	of	the	bentonite-treated	liner.

Step 5	 Coordinate	with	a	soils	laboratory	on	
testing to determine what degree of compac-

tion, water content, and rate of application of the 
proposed	additive	is	required	to	obtain	this	perme-
ability.	Consider	whether	high	quality	(free	swell	>	
22	mL)	is	being	used	and	whether	finely	ground	or	
coarsely	ground	bentonite	is	proposed.

Step 6 Design the final liner based on the results 
of step 5.

Example 10D–5—Design of a bentonite-treated 
liner
Given:  
A waste storage pond is planned with a depth of liquid 
of 21 feet. The State requirement for the location is 
a	specific	discharge	no	greater	than	one-fifty-sixth	of	
an inch per day of seepage. Assume the soils at grade 
have	been	tested	and	found	to	be	suitable	for	ben-
tonite	treatment.	Find	the	minimum	thickness	liner	
required according to CPS 521C, and determine the 
required	permeability	to	meet	this	specific	discharge	
requirement.

First, consult CPS 521C to determine the minimum 
required	thickness.	Assume	the	current	CPS	requires	a	
liner	that	is	18	inches	thick	(1.5	ft).	

Convert	the	specified	unit	seepage	rate	(specific	dis-
charge)	of	one-fifty-sixth	of	an	inch	per	day	into	the	
same	units	as	will	be	used	for	permeability	(centime-
ters per second). To convert, use conversion values 
shown	in	table	10–6,	multiply:	

 
ν = × × = ×− −1

56
2 94 10 5 25 105 7 in/d   cm/s. .

The	thickness	of	the	liner	and	depth	of	liquid	in	the	
pond	must	also	be	converted	to	metric	units.	To	con-
vert	the	liner	thickness	of	18	inches	to	centimeters,	
multiply	by	2.54,	which	equals	a	liner	thickness,	d,	of	
45.72	centimeters.	The	liquid	depth,	H,	of	21	feet	is	
equal to 

 
H = × × =21 12 2 54 640 1 ft  in/ft  cm/in  cm. .

Using	the	equation	described	previously,	solve	for	the	
required	permeability:

 

k
d

H d

k

=
×
+

=
× ×

+
= ×

−
−

ν

5 25 10 45 72

640 1 45 72
3 5 10

7. .

. .
.

 cm/s  cm

 cm  cm
88  cm/s
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The	designer	should	coordinate	with	a	soils	labora-
tory	to	determine	how	much	bentonite	of	given	quality	
is	required	to	obtain	this	low	a	permeability.	In	the	
experience	of	NRCS	engineers,	relying	on	this	low	a	
permeability	means	that	construction	quality	control	
must	be	excellent	and	all	the	procedures	and	materials	
used are of highest quality. Seldom should designs for 
clay	liners	rely	on	a	design	permeability	much	lower	
than	5×10–8 centimeters per second. A designer might 
want	to	proceed	with	this	design	but	require	a	slightly	
thicker	liner	(24	in)	to	provide	additional	assurance	of	
obtaining	the	design	specific	discharge.

Considerations for protective cover

CPS 521C recommends considering the addition of a 
protective	soil	cover	over	the	bentonite-treated	com-
pacted liner in waste impoundments. There are several 
reasons	why	a	soil	cover	should	be	provided:	

•	 Desiccation	cracking	of	the	liner	after	con-
struction	and	prior	to	filling	is	a	significant	
problem	because	the	bentonite	used	in	treat-
ment is highly plastic.

•	 Desiccation	cracking	of	the	liner	on	the	side	
slopes may occur during periods when the im-
poundment is drawn down for waste utilization 
or	sludge	removal.	Desiccation	cracking	would	
significantly	change	the	permeability	of	the	
liner.	Rewetting	generally	does	not	completely	
heal	the	cracks.	

•	 Bentonite-treated	liners	are	generally	thinner	
than compacted clay liners. Because the liner 
is	thin,	it	can	be	more	easily	damaged	by	ero-
sion from rainfall and runoff while the pond 
is	empty.	Rills	in	a	thin	liner	provide	a	direct	
pathway for seepage.

•	 Over	excavation	by	mechanical	equipment	dur-
ing sludge removal can damage the liner. A min-
imum	thickness	of	12	inches	measured	normal	
to	the	slope	and	bottom	is	recommended	for	a	
protective cover. The protective cover should 
be	compacted	to	reduce	its	erodibility.

Construction specifications for bentonite 
liner

The	best	equipment	for	compacting	bentonite-treated	
liners	is	smooth-wheeled	steel	rollers,	as	shown	in	fig-
ure	10D–20.	Crawler	tractor	treads	are	also	effective.	
Sheepsfoot rollers that are often used in constructing 
clay	liners	are	not	as	effective.	CPS	521C	specifies	
that	for	mixed	layers,	the	material	shall	be	thoroughly	
mixed	to	the	specified	depth	with	disk,	rototiller,	or	
similar equipment. In addition, intimate mixing of the 
bentonite	is	essential	to	constructing	an	effective	liner.	
If	a	standard	disk	is	used,	several	passes	should	be	
specified.	A	high-speed	rotary	mixer	is	the	best	method	
of	obtaining	the	desired	mix	(fig.	10D–22).	A	minimum	
of two passes of the equipment is recommended to as-
sure good mixing. When multiple passes of equipment 
are	used	for	applying	and	mixing	the	bentonite,	the	
passes	should	be	in	directions	perpendicular	to	each	
other. This encourages a more homogeneous mixture.

Another construction consideration is the moisture 
condition	of	the	soil	into	which	the	bentonite	is	to	be	
mixed.	Unless	the	soil	is	somewhat	dry,	the	bentonite	
will	most	likely	ball	up	and	be	difficult	to	thoroughly	
mix.	Ideally,	bentonite	should	be	spread	on	a	relatively	
dry soil, mixed thoroughly, then watered and com-
pacted.

Depending	on	the	type	of	equipment	used,	tearing	of	
the liner during compaction can occur on slopes of 
3H:1V	or	steeper.	Compacting	along,	rather	than	up	
and	down	slopes,	could	be	unsafe	on	3H:1V	or	steeper	
side	slopes.	For	most	sites,	slopes	of	3.5H:1V	or	4H:1V	
should	be	considered.

Figure 10D–22 Pulvermixer (high-speed rotary mixer) 
(Photo credit Stacy Modelski, NRCS)
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Bentonite-treated liners are often constructed in lifts 
that	are	4-inch	compacted	thickness.	Liners	should	
be	designed	in	multiples	of	4	inches	for	this	reason.	
Often,	the	first	layer	of	bentonite-treated	soil	is	the	soil	
exposed	in	the	bottom	of	the	excavation.	By	applying	
bentonite	to	the	exposed	grade,	disking	it	in	to	a	depth	
of	about	6	inches,	and	compacting	it,	the	first	layer	
is	formed.	Subsequent	lifts	are	formed	by	importing	
loose	fill	adequate	to	form	additional	4-inch-thick	lifts.	

Design and construction of clay 
liners treated with soil  
dispersants

Previous sections of this appendix caution that soils 
in groups III and IV containing high amounts of cal-
cium	may	be	more	permeable	than	indicated	by	the	
percent	fines	and	PI	values.	Groups	III	and	IV	soils	
predominated	by	calcium	usually	require	some	type	
of	treatment	to	serve	as	an	acceptable	liner.	The	most	
common method of treatment to reduce the perme-
ability	of	these	soils	is	use	of	a	soil	dispersant	additive	
containing sodium.

Types of dispersants 

The dispersants most commonly used to treat high cal-
cium	clays	are	soda	ash	(Na

2
CO

3
) and polyphosphates. 

The two most common polyphosphates are tetraso-
dium pyrophosphate (TSPP), and sodium tripolyphos-
phate	(STPP).	Common	salt	(NaCl)	has	been	used	in	
the	past,	but	it	is	considered	less	permanent	than	other	
chemicals and is not permitted in the current CPS 
521B.	NRCS	experience	has	shown	that	usually	about	
twice as much soda ash is required to effectively treat 
a given clay when compared to the other two disper-
sants.	However,	because	soda	ash	is	often	less	expen-
sive,	it	may	be	the	most	economical	choice	in	many	
applications.

Design details for dispersant-treated clay 
liner

CPS	521B,	Pond	Sealing	or	Lining,	Soil	Dispersant,	
provides	minimum	thicknesses	of	liners	using	the	
dispersant-treated	layer	method,	based	on	the	depth	

of liquid in the pond. CPS 521B provides guidance on 
approximate rates of application of soil dispersants 
based	on	testing	performed	by	the	NRCS	laboratories.	
Rates	provided	in	the	CPS	are	in	terms	of	pounds	of	
dispersant	required	per	100	square	feet	for	each	6-inch	
layer of liner. The total amount of dispersant per 100 
square	feet	is	then	equal	to	the	number	of	6	inch	lifts	in	
the	completed	liner	multiplied	by	the	rate	per	lift.	

Example 10D–6—Steps in design of a disper-
sant-treated liner
Assume for the purposes of this example that a soil 
has	been	tested	at	a	site	and	found	to	be	a	flocculated	
clay	with	an	unacceptably	high	permeability.	The	
designer chooses to evaluate a soda ash-treated liner. 
Consult the current CPS 521B for guidance on applica-
tion rates for soda ash. Assume that the current CPS 
suggests an application rate of 15 pounds of soda ash 
per	100	square	feet	of	liner	for	each	6-inch-thick	lift	of	
finished	liner.	Next,	assume	that	based	on	the	depth	
of water in the pond that the CPS 521B requires a 
total	liner	thickness	of	12	inches.	Then,	because	each	
6-inch-thick	lift	requires	15	pounds	of	soda	ash	per	
100 square feet, the total amount of soda ash required 
for	this	example	would	be	30	pounds	of	soda	ash	per	
100 square feet. The most up-to-date CPS 521B should 
always	be	consulted	for	recommended	rates,	in	case	
they have changed since this document was written.

The recommended rates of application of dispersants 
in	CPS	521B	are	based	on	the	most	up-to-date	infor-
mation	from	the	NRCS	soils	testing	laboratories.	The	
rates are in general conservative, and if a designer 
wanted to evaluate lower rates of application, samples 
should	be	obtained	and	sent	to	a	laboratory	for	docu-
menting	the	efficacy	of	lower	rates.	If	this	procedure	is	
followed, the following steps are usually implemented.

Step 1	 Obtain	a	sample	of	the	soil	to	which	the	
dispersant	is	to	be	added.	Have	the	sample	tested	
in	a	soils	laboratory	to	determine	its	basic	index	
properties,	including	percent	fines	and	plasticity.

Step 2	 A	standard	Proctor	(ASTM	D698)	test	is	
performed to determine the maximum dry density 
and optimum water content.

Step 3 From the preliminary design of the site, 
determine the depth of water in the structure and 
use	CPS	521B	to	determine	the	minimum	thick-
ness of liner required.
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Step 4 Using given or assumed values for al-
lowable	specific	discharge,	compute	the	required	
permeability	of	the	dispersant-treated	liner.

Step 5	 Coordinate	with	a	soils	laboratory	on	
testing to determine what degree of compac-
tion, water content, and rate of application of the 
proposed	additive	is	required	to	obtain	this	perme-
ability.	Consider	local	practice	and	consult	sup-
pliers to determine the relative costs of soda ash 
versus polyphosphates.

Step 6	 Design	the	final	liner	based	on	the	results	
from previous steps.

Example 10D–7—Comprehensive example for a 
dispersant-treated liner
Given:  
A waste storage pond is planned with a depth of liquid 
of 18 feet. The State requirement for the location is a 
specific	discharge	no	greater	than	2,000	gallons	per	
acre per day of seepage. Assume the soils at grade 
have	been	tested	and	found	to	require	dispersant	
treatment. Assume that the current CPS 521B requires 
a	minimum	liner	thickness	of	1.5	feet.	The	example	
problem	is	to	determine	what	permeability	is	required	
to	meet	the	stated	specific	discharge	requirement.

Solution:
First,	the	required	specific	discharge	value,	which	is	
given	in	units	of	gallons	per	acre	per	day	has	to	be	
converted	the	same	units	that	will	be	used	for	required	
permeability.	Assume	that	permeability	will	be	ex-
pressed	in	centimeters	per	second,	so	use	table	10D–6	
to convert the value of 2,000 gallons per acre per day 
to centimeters per second as follows:

 
ν =

×
= × −2 000

9 24 10
2 2 10

8
6,

.
.

 gal/acre/d
  cm/s

Next,	convert	the	liner	thickness	and	depth	of	liquid	
from units of feet to centimeters:

 d in= × =18 2 54 45 72  cm/in  cm. .

 H ft= × × =18 12 2 54 548 64  cm/ft  cm. .

Using	the	equation	described	previously,	solve	for	the	
required	permeability:
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The	designer	should	coordinate	with	a	soils	laboratory	
to determine how much soil dispersant of the desired 
type	is	required	to	obtain	this	low	a	permeability.	In	
the	experience	of	NRCS	engineers,	obtaining	this	value	
of	permeability	using	a	soil	dispersant	should	not	re-
quire special effort or unusual amounts of additive. At 
the same time, seldom should designs for dispersant-
treated	clay	liners	rely	on	a	design	permeability	much	
lower than 5×10–8 centimeters per second. A designer 
should proceed with this design specifying the applica-
tion	rate	recommended	by	the	soils	lab	and	a	1.5-foot-
thick	liner	to	obtain	the	design	specific	discharge.

Construction specifications for a disper-
sant-treated clay liner

The	best	equipment	for	compacting	clays	treated	with	
dispersants is a sheepsfoot or tamping type of roller. 
CPS	521B	specifies	that	the	material	shall	be	thorough-
ly	mixed	to	the	specified	depth	with	a	disk,	high	speed	
rotary mixer, or similar equipment. Because small 
quantities of soil dispersants are commonly used, 
uniform mixing of the dispersants is essential to con-
structing	an	effective	liner.	If	a	standard	disk	plow	is	
used,	several	passes	should	be	specified.	A	high-speed	
rotary	mixer	is	also	essential	to	obtain	a	thorough	mix-
ture	of	the	dispersant	with	the	clay	being	amended.	
Figure	10D–23	shows	this	type	of	equipment.	At	least	
two passes of the equipment is recommended to as-
sure good mixing. 

Other construction considerations are also important. 
Using	the	bathtub	method	of	construction	on	slopes	of	
3H:1V	or	steeper	can	cause	tearing	of	the	liner	during	
compaction and reduce the effectiveness of compac-
tion	equipment.	Slopes	as	flat	as	3.5H:1V	or	4H:1V	
should	be	considered	for	this	factor	alone,	for	bathtub	
type construction.
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Current	CPSs	usually	require	a	liner	thicker	than	6	
inches.	A	liner	generally	can	be	satisfactorily	con-
structed	in	a	series	of	lifts	by	mixing	in	the	required	
amount	of	soil	dispersant	to	a	9-inch-thick	loose	depth	
and	then	compacting	it	to	the	6	inches.	Thicker	liners	
should	be	constructed	in	multiple	lifts,	with	the	final	
compacted	thickness	of	each	lift	being	no	greater	than	
6	inches.	

Uplift pressures beneath clay 
blankets

A	clay	blanket	may	be	subject	to	uplift	pressure	from	a	
seasonal	high	water	table	in	the	foundation	soil	under-
neath the clay liner. The uplift pressure in these cases 
can exceed the weight of the clay liner, and failure in 
the	clay	blanket	can	occur	(fig.	10D–24).	This	problem	
is	most	likely	to	occur	during	the	period	before	the	
waste	impoundment	is	filled	and	during	periods	when	
the	impoundment	may	be	emptied	for	maintenance	
and	cleaning.	Figure	10D–25	illustrates	the	parameters	
involved	in	calculating	uplift	pressures	for	a	clay	blan-
ket.	The	most	critical	condition	for	analysis	typically	
occurs	when	the	pond	is	emptied.	Thicker	blankets	
to	attain	a	satisfactory	safety	factor	should	be	used	if	
they are required.

The factor of safety against uplift is the ratio of the pres-
sure	exerted	by	a	column	of	soil	to	the	pressure	of	the	
ground	water	under	the	liner.	It	is	given	by	the	equation:

 

FS
d

z
sat

water

=
×

× × ( )
γ

γ αcos

where:
d	 =	 thickness	of	liner,	measured	normal	to	the	

slope
α = slope angle 
γ

water
 = unit weight or density of water

γ
sat

 = saturated unit weight of clay liner
z = vertical distance from middle of clay liner 

to	the	seasonal	high	water	table

Figure 10D–23 High-speed rotary mixer used to mix 
dispersants into clays (Photo credit Jody 
Kraenzel, NRCS)

Figure 10D–24	 Failure	of	compacted	liner	from	uplift	forces	below	clay	blanket	(Photo credits NRCS, TX)
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A	factor	of	safety	of	at	least	1.1	should	be	attained.	
The	safety	factor	can	be	increased	by	using	a	thicker	
blanket	or	providing	some	means	of	intercepting	the	
ground water gradient and lowering the potential head 
behind	the	blanket.	Often,	sites	where	seasonal	high	
water	tables	are	anticipated	designs	include	a	perim-
eter drain to collect the water and prevent this type of 
damage.	Another	option	is	a	concrete	structure	above	
ground.

Another	situation	where	a	clay	liner	may	be	damaged	
from hydrostatic pressure is one where a site is located 
in a flood plain of a stream or river. The site may have 
to	be	built	above	ground	level	in	this	location	to	avoid	
a	seasonal	high	water	table.	Figure	10D–26	illustrates	
the	problem	that	may	occur	that	must	be	considered	
by	designers.	A	temporary	flood	condition	in	the	flood	
plain	can	subject	the	agricultural	waste	impoundment	
to a differential head when the pond is empty. The 
pond	could	be	empty	shortly	following	construction	or	
it	could	be	empty	to	apply	waste	to	crops.	Uplift	pres-
sure may cause piping of sandy horizons underlying the 
site	and	boils,	and	sloughing	of	side	slopes	can	occur	
as	shown	in	figure	10D–26.	The	photo	shows	a	clay-
lined animal waste impoundment where the clay liner 
was damaged from excessive hydrostatic uplift forces 
caused	by	temporary	storage	of	flood	waters	outside	
the	embankment.	The	liner	must	be	thick	enough	to	
resist	predicted	buoyant	forces	if	it	is	possible	for	the	
pond	to	be	empty	or	near	empty	during	a	flood.	Drains	
will	be	ineffective	because	in	a	flood,	outlets	will	be	
submerged.

Figure 10D–25	 Uplift	calculations	for	high	water	table	
and	clay	blanket	(from	Oakley	1987)

Water
bearing
stratum

Middle of water
bearing stratum

Water level in pond

Clay liner

z
d

α

Figure 10D–26	 Uplift	conditions	caused	by	temporary	
flood stage outside lagoon (Photo credit 
NRCS, WA)
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Differential
hydrostatic
head

Flood plain surface

Temporary flood level
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Perimeter drains for animal waste 
storage ponds

When	a	high	water	table	is	anticipated	and	uplift	
pressures are anticipated, one approach to solving 
the	problem	is	to	install	a	drain	around	the	pond.	The	
drain may completely encircle the pond if a designer 
anticipates	a	general	elevated	water	table	in	the	site	
vicinity. At other sites with a more sloping ground sur-
face,	the	perimeter	drain	may	only	be	installed	on	the	
side(s) of the impoundment where the elevated water 
table	is	anticipated.	Drains	may	be	used	both	for	clay	
liners and geosynthetic liners.

Drains	usually	are	constructed	by	
•	 digging	a	trench	to	the	depth	needed	to	draw	

down	the	water	table

•	 placing	a	perforated	or	slotted	drainage	pipe	

•	 surrounding	the	drain	with	granular	material	
that	is	compatible	with	both	the	slot	size	in	
the pipe and the gradation of the surrounding 
foundation soils 

Pipes	with	small	slots	that	are	compatible	with	a	filter	
sand	like	ASTM	C–33	are	preferred	to	avoid	having	to	
use	two	filter	gradations.	If	pipes	with	larger	perfora-
tions	are	used,	they	should	be	surrounded	with	gravel	
to prevent particles from moving into the pipe. Figure 
10D–27	(a,	b,	and	c)	show	typical	installations	where	
a	single	filter	and	perforated	pipe	is	used.	Another	
approach to installing a drain is to dig a trench, line it 
with geotextile, and after putting a slotted collector 
pipe	in	the	trench,	filling	it	with	gravel.	Figure	10D–28	
shows this type of installation.

Several	types	of	drain	pipe	may	be	used.	One	type	is	a	
low strength corrugated pipe with slots or perforations 
surrounded	by	a	filter	envelope	of	granular	material.	
Figure	10D–29	is	an	example	of	this	time	of	collector	
pipe.	If	a	higher	strength	pipe	is	required,	figure	10D–
30	shows	another	type	of	pipe	that	is	sometimes	used	
for these types of installations.

Figure 10D–27 Typical drain installations using single 
filter	with	well-screened	collector	pipe	

(a)

(b)

(c)

Slotted pipe with 
slots sized no larger 

than No. 20

HDPE
liner

ASTM C33 sand

Slotted pipe with 
slots sized no larger 
than No. 20

Dig trench drain to near bottom of 
pond—may require an access trench to 
permit doing this (see fig. 10D−27c)

HDPE
liner

ASTM
C33

sand

Access trench backfilled 
with semi-pervious material

Illustrated access trench construction to permit installing 
deeper trench drain. Access trench filled with semi-pervious 
soil to limit infiltration of surface runoff.

HDPE
liner

ASTM
C33

sand
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Figure 10D–28 Perforated collector pipe installed the 
gravel envelope with trench lined with 
geotextile

Figure 10D–29 Low-strength	perforated	drainage	tubes

Figure 10D–30 Corrugated drainage pipe with slots, 
doubled	walled	pipes	may	be	specified	if	
higher strengths are needed
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Soil mechanics testing for  
documentation

Laboratory	soil	testing	may	be	required	by	regula-
tions for design, or a designer may not choose to rely 
on	correlated	permeability	test	values.	The	NRCS	
National	Soil	Mechanics	Center	Laboratories	have	
the	capability	to	perform	the	necessary	tests.	Similar	
testing	is	also	available	at	many	commercial	labs.	The	

Figure 10D–31	 Equipment	used	for	performing	ASTM	D5084

Disassembled	mold	with	compacted	specimen

Molded	sample	after	dissembling	mold

Molding	a	sample	for	a	flexible	wall	permeability	test

Preparing	sample	in	cell	for	flexible	wall	permeability	test

accepted	method	of	permeability	testing	is	by	ASTM	
Standard	Test	Method	D5084,	Measurement	of	Hydrau-
lic Conductivity of Saturated Porous Materials Using a 
Flexible	Wall	Permeameter.	Figure	10D–31	shows	the	
equipment used for performing the test.

Contact	the	labs	for	more	detailed	information	on	
documentation	needed	and	for	procedures	for	submit-
ting samples. 
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Figure 10D–32	 Shelby	tube	sample	being	obtained	with	
backhoe	bucket	used	to	force	tube	into	
clay liner (Photo credit Jody Kraenzel, 
NRCS, NE)

If	the	only	tests	requested	are	gradation	and	Atterberg	
limit tests, smaller samples are needed. The size of 
sample	that	should	be	submitted	depends	on	the	grav-
el	content.	The	following	recommendations	should	be	
adhered to:

Estimated gravel content 
of the sample 1/

(%)

Sample moist weight
(lb)

0–10 5

10–50 20

>50 40

1/ The sample includes the gravel plus the soil material that  
passes	the	No.	4	sieve	(approx.	1/4-inch	mesh).

If	gradation	analysis,	Atterberg	limits,	compaction,	and	
permeability	testing	are	requested,	considerably	larger	
samples are required. When all these tests are needed, 
the	sample	size	should	be	as	follows:

Estimated gravel content 
of the sample 1/

(%)

Sample moist weight
(lb)

0–10 50

10–50 75

>50 100

1/ The sample includes the gravel plus the soil material that  
passes	the	No.	4	sieve	(approx.	1/4-inch	mesh).

Submitting	samples	at	their	natural	water	content	is	
important so designers can compare the natural water 
content to reference compaction test values. Samples 
should	always	be	shipped	in	moisture	proof	containers	
for	this	reason.	The	best	container	for	this	purpose	is	
a	5-gallon	plastic	pail	commonly	obtained	in	hardware	
stores.	These	pails	have	tight	fitting	lids	with	a	rubber	
gasket	that	ensures	maintenance	of	the	water	content	
in the samples during shipping. These 5-gallon pail 
containers	are	much	more	robust	and	less	likely	to	be	
damaged	during	shipment	than	cardboard	containers.

If designs rely on a minimum degree of compaction 
and	water	content	to	achieve	stated	permeability	goals	
in a clay liner, testing of the clay liner during construc-
tion	may	be	advisable	to	verify	that	design	goals	have	
been	achieved.	Field	density	and	water	content	mea-
surements are routinely made using procedures shown 
in	NEH,	Section	19,	Construction	Inspection.

Other methods for documenting 
liner seepage

Performing density/water content tests during con-
struction is a generally accepted method of document-
ing	that	a	clay	liner	has	been	constructed	according	to	
specifications.	If	the	liner	is	found	to	meet	the	require-
ments	of	the	compaction	specifications,	the	assump-
tion	is	that	the	permeability	values	documented	from	
laboratory	testing	on	samples	that	were	compacted	
at	the	specified	density	and	water	content	will	be	
achieved. In some cases, no additional documentation 
is	required.	In	other	cases,	regulations	require	obtain-
ing samples of the completed liner and performing 
permeability	tests	on	them.	Figure	10D–32	shows	one	
way	that	a	Shelby	tube	type	of	sample	may	be	obtained	
without	mobilizing	a	drilling	rig.	The	Shelby	tube	used	
is	typically	a	standard	tube	with	a	3-inch	outside	diam-
eter and 2 7/8-inch inside diameter. This size sample 
can	be	placed	directly	in	a	flexible	wall	permeameter	
for	testing,	after	extrusion	in	the	laboratory.

Another	method	for	obtaining	a	sample	of	a	compact-
ed	clay	liner	is	with	a	drive	sampler	like	that	shown	in	
figure	10D–33.
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In the situation where a storage pond was constructed 
several	years	before	documentation	on	quality	of	
construction	and	permeability	was	required,	studies	
are sometimes made in an attempt to measure seepage 
losses	directly.	One	approach	that	has	been	used	was	
developed	by	researchers	at	Kansas	State	University.	
This approach involves installing precise water level 
monitoring devices and evaporation stations. Seepage 
losses	can	be	estimated	by	carefully	monitoring	the	
levels in the pond during periods when no waste is 
introduced into the pond and no rainfall occurs. After 
estimating	the	amount	of	evaporation,	and	subtracting	
that from the total decline in the level of the pond dur-
ing	that	period,	seepage	loss	can	be	estimated.	Figure	
10D–34	shows	equipment	for	measuring	evaporation	
in a pond.

Figure 10D–33	 Obtaining	undisturbed	sample	of	com-
pacted clay liner using thin-walled drive 
cylinder

Figure 10D–34	 Equipment	used	to	monitor	evaporation	
at an agriculture waste storage lagoon. 
Measurements are used in total lagoon 
seepage evaluations.
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Summary

•	 The	reduction	in	the	quantity	of	seepage	that	
occurs as manure solids accumulate in the 
bottom	and	on	the	sides	of	storage	ponds	and	
treatment lagoons is well documented. How-
ever, manure sealing is not effective for soils 
with a low clay content. Its effectiveness is not 
accepted	by	all	designers	and	cannot	be	used	in	
the	designs	of	storage	ponds	by	some	State	and	
local regulations. 

•	 Soils	can	be	divided	into	four	permeability	
groups	based	on	their	percent	fines	(percent	
finer	than	the	No.	200	sieve)	and	plasticity	
index	(PI).	Soils	in	groups	III	and	IV	may	be	
assumed	to	have	a	coefficient	of	permeability	
of	1×10–6 centimeters per second or lower un-
less they have an unusual clay chemistry (high 
calcium),	or	they	have	a	very	blocky	structure.	

•	 Group	I	soils	will	generally	require	a	liner.	Soils	
in	group	II	will	need	permeability	tests	or	other	
documentation to determine whether a desir-
able	permeability	rate	can	be	achieved	for	a	
particular soil.

•	 If	natural	clay	blankets	are	present	at	a	site	
below	planned	grade	of	an	excavated	pond,	
the	seepage	rate	should	be	estimated	based	on	
measured	or	estimated	permeability	values	of	
the	low	permeability	horizons	beneath	the	liner	
and	above	an	aquifer.	If	the	estimated	seepage	
rate	is	less	than	that	given	in	NRCS	guidance	
or State regulations, no special compacted 
liner	may	be	required.	If	the	soils	at	grade	are	
not	of	sufficient	thickness	and	permeability	to	
produce	a	desirably	low	seepage	rate,	a	liner	
should	be	designed	to	achieve	the	seepage	rate	
that is the design goal.

•	 Guidance	is	given	on	factors	to	consider	wheth-
er	a	constructed	liner	may	be	required.	Four	
conditions are listed in which a liner should 
definitely	be	considered.

•	 Allowable	specific	discharge	values	are	dis-
cussed	and	guidance	is	provided	on	reasonable	
values to use for design when other regulatory 
requirements	are	not	specified.

•	 Flexibility	is	built	into	the	design	process.	The	
depth	of	the	liquid,	the	permeability,	and	thick-

ness	of	the	soil	liner	can	be	varied	to	provide	
an	acceptable	specific	discharge.

•	 The	guidelines	provided	for	design	of	clay	
liners in this appendix provide designers with 
the	tools	to	evaluate	the	probable	unit	seepage	
or	specific	discharge	through	a	clay	liner.	The	
methods presented allow a designer to deter-
mine what treatment is required to achieve 
specific	discharge	or	permeability	goals.	

•	 Methods	provide	designers	with	the	ability	to	
evaluate the effect of changes in a proposed 
design on the estimated unit seepage rate. 

•	 As	additional	research	becomes	available,	prac-
tice standards and guidance in this document 
may warrant revision.
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